

Available online at www.sciencedirect.com

Global challenges and strategies for control, conversion and utilization of CO₂ for sustainable development involving energy, catalysis, adsorption and chemical processing adsorption

Chunshan Song *

Clean Fuels and Catalysis Program, The Energy Institute, and Department of Energy & Geo-Environmental Engineering, The Pennsylvania State University 209 Academic Projects Building, University Park, PA 16802, USA

Abstract

Utilization of carbon dioxide (CO₂) has become an important global issue due to the significant and continuous rise in atmospheric CO₂ concentrations, accelerated growth in the consumption of carbon-based energy worldwide, depletion of carbon-based energy resources, and low efficiency in current energy systems. The barriers for CO₂ utilization include: (1) costs of CO₂ capture, separation, purification, and transportation to user site; (2) energy requirements of CO₂ chemical conversion (plus source and cost of co-reactants); (3) market size limitations, little investment-incentives and lack of industrial commitments for enhancing CO₂-based chemicals; and (4) the lack of socio-economical driving forces. The strategic objectives may include: (1) use CO₂ for environmentally-benign physical and chemical processing that adds value to the process; (2) use CO₂ to produce industrially useful chemicals and materials that adds value to the products; (3) use CO₂ as a beneficial fluid for processing or as a medium for energy recovery and emission reduction; and (4) use CO₂ recycling involving renewable sources of energy to conserve carbon resources for sustainable development. The approaches for enhancing CO₂ utilization may include one or more of the following: (1) for applications that do not require pure CO₂, develop effective processes for using the CO₂-concentrated flue gas from industrial plants or CO₂rich resources without CO₂ separation; (2) for applications that need pure CO₂, develop more efficient and less-energy intensive processes for separation of CO₂ selectively without the negative impacts of co-existing gases such as H₂O, O₂, and N₂; (3) replace a hazardous or less-effective substance in existing processes with CO₂ as an alternate medium or solvent or co-reactant or a combination of them; (4) make use of CO₂ based on the unique physical properties as supercritical fluid or as either solvent or anti-solvent; (5) use CO₂ based on the unique chemical properties for CO₂ to be incorporated with high 'atom efficiency' such as carboxylation and carbonate synthesis; (6) produce useful chemicals and materials using CO₂ as a reactant or feedstock; (7) use CO₂ for energy recovery while reducing its emissions to the atmosphere by sequestration; (8) recycle CO₂ as C-source for chemicals and fuels using renewable sources of energy; and (9) convert CO₂ under either bio-chemical or geologic-formation conditions into "new fossil" energies. Several cases are discussed in more detail. The first example is tri-reforming of methane versus the wellknown CO₂ reforming over transition metal catalysts such as supported Ni catalysts. Using CO₂ along with H₂O and O₂ in flue gases of power plants without separation, tri-reforming is a synergetic combination of CO₂ reforming, steam reforming and partial oxidation and it can eliminate carbon deposition problem and produces syngas with desired H₂/CO ratios for industrial applications. The second example is a CO₂ "molecular basket" as CO₂-selective high-capacity adsorbent which was developed using mesoporous molecular sieve MCM-41 and polyethylenimine (PEI). The MCM41-PEI adsorbent has higher adsorption capacity than either PEI or MCM-41 alone and can be used as highly CO₂-selective adsorbent for gas mixtures without the pre-removal of moisture because it even enhances CO₂ adsorption capacity. The third example is synthesis of dimethyl carbonate using CO₂ and methanol, which demonstrates the environmental benefit of avoiding toxic phosgene and a processing advantage. The fourth example is the application of supercritical CO₂ for extraction and for chemical processing where CO₂ is either a solvent or a co-reactant, or both. The CO₂ utilization contributes to enhancing sustainability, since various chemicals, materials, and fuels can be synthesized using CO₂, which should be a sustainable way in the long term when renewable sources of energy are used as energy input. © 2006 Elsevier B.V. All rights reserved.

Keywords: Carbon dioxide; Strategy; Sustainable development; Atom efficiency; Utilization; energy; Tri-reforming; CO₂ reforming; Emissions; Catalysis; Conversion; Capture; Separation; Reforming; Dimethylcarbonate; Supercritical CO₂; Fuels

E-mail address: csong@psu.edu.

^{**} Based on a plenary lecture at the 8th International Conference on Carbon Dioxide Utilization (ICCDU-VIII) held in Oslo, Norway, during 20–23 June, 2005.

^{*} Tel.: +1 814 863 4466; fax: +1 814 865 3248.

1. Introduction

In the history of civilizations, the 20th century can be characterized as a century of explosive growth in energy consumption and rapid increase in population worldwide, as shown in Table 1, along with unprecedented pace of inventions of new technologies and ever-increasing expansion of manmade materials. One of the greatest revolutions in the 20th century is that of transport. Inventions of cars, trucks, and airplanes along with engine-powered trains and ships have created a new world that has become increasingly dependent on combustion of hydrocarbon fuels such as gasoline, diesel fuel, and jet fuel. Inventions of electrical power plants, electric home appliances, personal computers, and mobile cell phones have electrified the world, which is increasingly dependent on electricity generated largely from carbon-based resources such as coal and natural gas. Invention of high-pressure ammonia synthesis and development of the chemical fertilizers with nitrogen, phosphorus, and potassium and the engine-based machinery for crop production fueled the rapid growth in global population.

Environmental problems due to emissions of pollutants from combustion of solid, liquid and gaseous fuels in various stationary and mobile energy systems as well as the emissions from manufacturing plants have also become major global problems involving not only the pollutants such as NO_x, SO_x, and particulate matter, but also the greenhouse gases (GHG) such as carbon dioxide (CO₂) and methane (CH₄). There are increasing concerns for global climate change [1–3] and thus heightened interest worldwide for reducing the emissions of GHG, particularly CO₂ [4–7].

 CO_2 is a colorless and odorless gas. The molecule is linear with a double bond between the carbon and oxygen atoms (O=C=O). CO_2 occurs in nature and serves as source of carbon for photosynthesis of plants and crops. It is present in atmosphere with a volumetric concentration of 0.038 % (377 parts per million by volume, ppmv) as of December 2004 [8]. Combustion of most carbon-containing substances produces CO_2 . Energy utilization in modern societies today is based on combustion of carbonaceous fuels, which are dominated by the three fossil fuels: coal, petroleum, and natural gas. Complete oxidation or combustion of any carbon-based organic matter produces CO_2 , but until recently, CO_2 gas was generally thought to be harmless. In fact, CO_2 plays an important role in the earth's carbon cycle, and is a necessary ingredient in the life cycle of animals and plants [9,10].

This article is an overview on the global issues of CO₂ utilization and the strategic directions that were initially introduced in an earlier report [11,12]. The purposes of this overview are to discuss the global challenges and strategic considerations for the control, conversion and utilization of CO₂ and the research directions of CO₂ utilization. It is written to facilitate the advances in this research area worldwide. It focuses on directions and approaches and is meant to be complimentary to the topical reviews on synthesis of organic chemicals [13–19], on chemical conversion of CO₂ over heterogeneous catalysts [20–25], on synthesis gas production from CO₂ reforming of CH₄ [25-29], on reactions in supercritical CO₂ as a reactant or medium [1,30-33], on polymer synthesis and processing using supercritical CO₂ [34,35], on thermodynamics of chemical reactions [36]; and on various chemical processes involving CO₂ [4,5,11,12,16,37-43].

Table 1 Worldwide energy use, population and per capita consumption in 20th century

Energy	1900 Use	1900 Distn	2001 Use	2001 Distn
Source	Million tons of oil quivalent ^{a,b}	Percentage (%) or Unit	Million tons of oil equivalent ^{b,c}	Percentage (%) or Unit
Coal	501	55	2395	24
Petroleum	18	2	3913	39
Natural gas	9	1	2328	23
Nuclear	0	0	662	6
Renewables ^d	383	42	750	8
Total	911	100%	10048	100%
Population ^{a,b}	1,762	Million	6153	Million
Per Capita E Use	0.517	TOE ^e	1.633	TOE
Global CO ₂ emission ^{b,c}	534	MMTCE ^e	6607	MMTCE
Per capita CO ₂ emission	0.30	MTCE ^e	1.07	MTCE
Atmospheric CO ₂ ^f	295	ppmv ^e	371	ppmv
Life expectancy ^g	47.3	Years	77.2	Years

^a Source for energy in 1900: C. Flavin and S. Dunn of Worldwatch Institute (State of the World, 1999).

^b Sources: 2001 data from Statistical Abstract of the United States 2003 (The National data Book, US Department of Commerce, 2004); 1900 population and CO₂ data from US Census Bureau-Historical Estimates of World Population from different sources for years up to 1950 (US Bureau of Censors, 1999).

^c Sources for 2001 CO₂ data: International Energy Annual 2002 (Energy Information Administration, 2004).

^d Including hydroelectric power, biomass, geothermal, solar and wind energy.

^e Units: ton of oil equivalent (TOE); million metric tons of carbon equivalent (MMTCE); metric ton of carbon equivalent (MTCE); parts per million by volume (ppmv).

^f Carbon Dioxide Information Analysis Centre (Keeling and Whorf, 2005).

^g Data for the US from National Center for Health Statistics (U.S. Department of Health and Human Services, 2003).

Table 2 Sources of carbon dioxide (CO₂) emissions

Stationary sources	Mobile sources	Natural sources
Fossil fuel-based electric power plants	Cars, and sports utility vehicles	Humans
Independent power producers	Trucks and buses	Animals
Manufacturing plants in industry ^a	Aircrafts	Plants and animal decay
Commercial and residential buildings	Trains and ships	Land emission/leakage
Flares of gas at fields	Construction vehicles	Volcano
Military and government facilities	Military vehicles & devices	Earthquake

^a Major concentrated CO₂ sources include plants for manufacturing hydrogen, ammonia, cement, limestone, and soda ash as well as fermentation processes and chemical oxidation processes.

2. Global energy and CO₂ problems

Table 1 shows the changes in worldwide consumption of various forms of primary energy sources along with global and per capita CO₂ emissions from 1900 to 2001, which reflects the tremendous global economic developments in the 20th century.

2.1. Rise in atmospheric CO₂ concentrations

The sources of CO₂ emissions include stationary, mobile, and natural sources, as listed in Table 2. The anthropogenic emissions include those from energy utilization in stationary and mobile sources, but exclude natural sources. Fig. 1 shows

the changes in the global atmospheric CO₂ concentration for over one millennium during 1000–2004 based on recent studies [8]. Atmospheric CO₂ concentration changed only slightly over the period of a thousand years till 20th century, from 280 ppmv in 1000 to 295 ppmv in 1900 based on Antarctica ice core data [44], but increased to 315 ppmv in 1958 and further to 377 ppmv in 2004 based on actual analysis in Hawaii [8]. It should be mentioned that the atmospheric CO₂ has important and positive roles in the ecological system, since photosynthesis and food production depends on it as a carbon source. The fossil fuels that we use today originated from atmospheric CO₂ millions of years ago. However, through the studies in the past five decades and most notably in the last 15 years, the emissions

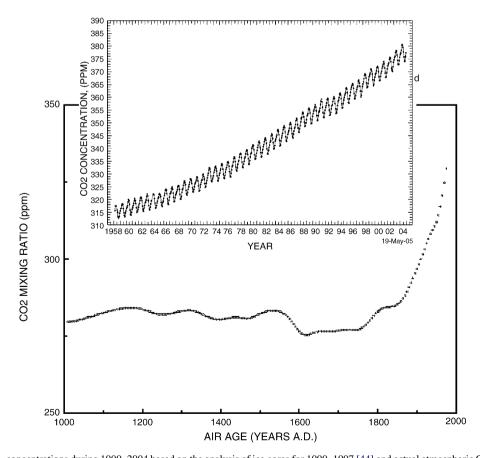
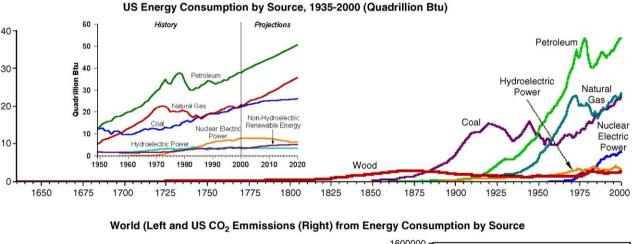


Fig. 1. Atmospheric CO₂ concentrations during 1000–2004 based on the analysis of ice cores for 1000–1997 [44] and actual atmospheric CO₂ analysis during 1958–2004 [8].

of CO_2 have become an important concern for global climate change because the atmospheric CO_2 concentrations increased significantly in the last century and continuously rising at a faster rate.


Fig. 2 shows the US energy consumption by source during 1635-2000 in quadrillion (10^{15}) Btu including a future projection to 2020, along with the world CO₂ emissions during 1750-2002 (in million metric tons of carbon) and US CO₂ emissions during 1800–2000 (in thousand metric tons of carbon). The growth in energy consumption and the rise in GHG emissions in the US parallel each other, as can be seen from Fig. 2. The same trend is true also for the world [45,46]. The growth rates of most regions in the world are becoming more rapid. The energy crises in 1973 and 1978 caused some slow down but the overall trends of growth continued. Since early 1980s, globalization of manufacturing led by the industrialized nations and economical developments in the developing countries have greatly accelerated the growth in energy consumption and also worldwide CO₂ emissions per capita. According to a recent study, about 290 billion tons of carbon have been released to the atmosphere from the consumption of fossil fuels and cement production since 1751, but half of these emissions have occurred since the mid 1970s [45].

2.2. Fast depletion of energy resources

A major challenge in the world is that the fossil hydrocarbon resources are being consumed so rapidly worldwide. The resources of petroleum and natural gas that took tens of millions of years to form and accumulate have been consumed so fast in the last 80 years that they have shrunk to one to two human life spans [171]. Coal resources are more abundant and projected to last longer, for two to three hundred years based on current rate of consumption, but they are also limited [172,173]. Through a comprehensive analysis in a recent review, Weisz has pointed out that the energy demand and the population growth are exhausting the world's supplies of oil, gas and coal (Weisz, 2004). Other nonconventional fossil fuels such as tar sands, oil shale, and natural gas hydrates are also being considered and tar sands are being used commercially in Canada. All of these conventional and nonconventional hydrocarbon resources are non-renewable, and thus can be exhausted.

2.3. Waste of energy in current systems

The existing energy systems such as stationary power plants and mobile engine systems as in cars and trucks have been improved significantly in the last eight decades since the

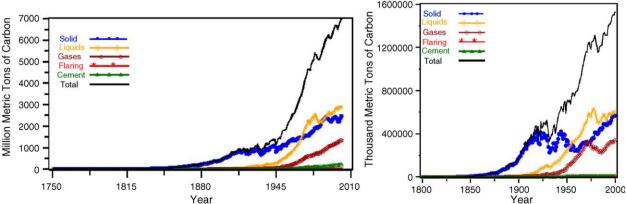


Fig. 2. Energy consumption and CO_2 emissions, including US consumption of different energy sources during 1650–2000 (top); projected energy consumption to 2020 (top, insert) (Source: various sections in [46]); and World CO_2 emissions in million metric tons of carbon (bottom left) and US CO_2 emissions in thousand metric tons of carbon by fuel type (bottom, right) (Source: [45]).

1920s. However, there is a fundamental limit in the energy conversion efficiency that is commonly known as the Carnot cycle efficiency. Fig. 3 shows the overall energy flow in the electric power plants in the US in 2003 [46]. It is important to note that as much as 65% of the energy input (39.62 quadrillion BTU, Quads) into the electric power plants, is wasted. In other words, a huge amount of primary energy input, as much as 25.80 Quads, is wasted as conversion loss. The useful energy output, 13.82 Quads as electricity, represents only 35% of the energy input as electricity. This is the efficiency that can be achieved in large centralized energy conversion systems today in the US. The overall system energy efficiencies for cars and trucks as well as trains and airplanes are lower than the large-scale central power plants. It is worth noting that as much as 65–80% of energy input is wasted as conversion loss in the mobile energy systems such as passenger cars.

Therefore, a fundamentally critical problem is that we consume more resources than needed because we throw away more energy as waste than we make use of the energy as work. These apply to the utilization systems for all the hydrocarbon fuels since the waste is more than the useful output of energy such as electricity or distance traveled with a gasoline engine. As a consequence, we are emitting more greenhouse gases along with the pollutants into the environment per unit of useful energy output.

3. Global energy challenges in the 21st century

GHG problems are largely the results of consuming the carbon-based energy using the combustion-based energy systems, as can be seen from Table 1 and Fig. 2. Based on the above discussion, the major challenges in the 21st century can be highlighted below.

- Supply clean fuels and electricity to meet the growing demand worldwide safely.
- Eliminate environmental pollution problems and stabilize GHG emissions due to energy utilization.
- Increase energy efficiency by developing new energy systems for overcoming the thermodynamic limits of existing wasteful energy systems.
- Sustainable and safe development of energy sources including renewable energy sources.
- Sustainable organic material development involving carbonbased feedstock.

As a developed civilization that is accustomed to the electrified and motorized living in the wired and wireless network, we need to develop a way to decouple the seemingly natural link between the energy utilization and the environmental problems such as emissions of NO_x , SO_x and particulate matters as well as volatile organic compounds. One approach is to design and develop cleaner and more efficient energy systems that do not generate such pollutants, rather than by post-utilization clean up from existing systems such as trucks and stationary power plants.

There is a real need to increase the energy efficiency in a major jump, e.g., from 15–35 to 60–80%, by developing new, more efficient and cleaner energy systems, rather than incremental improvement based on the existing systems. This would minimize any CO₂ emissions that are associated with the wasteful energy uses and thus contributes to gradual stabilization of atmospheric CO₂ concentrations. Recent advances in new power system designs such as integrated gasification-combined cycle (IGCC), gas turbine combined cycle (GTCC), hydrogen energy, and fuel cell developments offer some promises and clues to the future development [46].

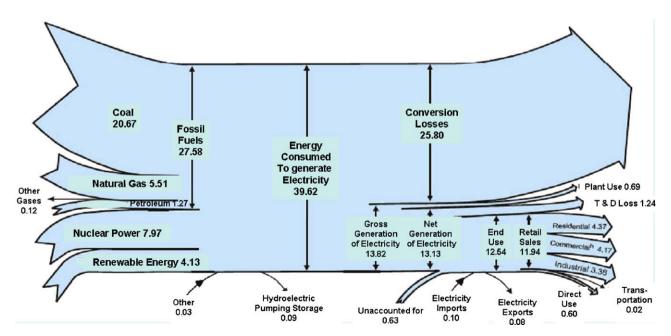


Fig. 3. The overall energy flow in the electric power plants in the US in 2003 in quadrillion BTU [46].

There is a long-term need to make more active use of renewable sources of energy (e.g., solar energy, biomass, wind, geothermal, wave) and design better conversion systems without negative impacts on the environment. For the foreseeable future (the next two decades), fossil fuels will continue to be the dominant and the most cost-effective energy resource. However, the use of more renewable resources must be emphasized even if it costs more in the near term. This is important for sustainable energy development, and government incentives are necessary to nurture the growth of renewable sources such as solar and biomass along with recycled energy sources such as organic wastes.

Biomass provides a path for renewable sources of carbon-based energy, chemicals, and materials. Solar energy conversion via photovoltaic cells is a path that has most energy and environmental benefits and also potential to grow, provided that more efficient conversion devices can be made affordable. It should be noted that renewable energy utilization systems can have some negative impacts to the human and ecological environments (effects of solar energy facilities on land use; biomass growth on land area; wind power on birds; hydropower on aqua life, etc.). Nonetheless, there are also great benefits. It is a major challenge because the use of so-called renewable energy sources encounters regional distribution and seasonable availability issues as well as energy density issues.

Hydrogen energy has the potential to decouple the link between energy utilization and environmental problems, and can make the energy conversion systems more efficient through use of fuel cells. Centralized H₂ production and distributed H₂ gen eration on-site and on-board are both viable options for the path forward. Hydrogen energy development can significantly reduce the greenhouse gas emissions, and eliminate the pollutants emissions from mobile as well as stationary sources. It should be noted that unlike petroleum or natural gas, H₂ molecule does not exist as a resource in nature in the earth system, H2 must be produced by using sources of hydrogen atom with energy input. Therefore, H₂ is an energy carrier like electricity. H₂ production, storage, and utilization via fuel cell systems are active research subjects, but H2 energy could be made sustainable if renewable sources of energy is used as energy input [47,48]. The US Department of Energy is supporting research for hydrogen energy development through major government-funded programs such as Freedom CAR and Freedom Fuel for mobile systems such as cars and trucks [49] and Future Gen for stationary systems [50] such as coal-based electric power plants.

Nuclear energy has a huge potential for growth in terms of meeting the energy needs without GHG emissions, but it also involves major challenges that have resulted in the NIMBY (not in my back yard) syndrome worldwide. This is largely related to the accidents of nuclear power plants at Three Mile Island on 28th March 1979 in the US and in Chernobyl in Ukraine on 26th April 1986. The security and safety of nuclear power plants and also the spent nuclear fuels is a more serious concern in the current global political-economical

environments that have been impacted significantly by the terrorists' attacks on the US on 11th September 2001, on Spain in Madrid on 11th March 2004, and on UK in London on 7th July 2005. The security of even the non-nuclear, chemical manufacturing plants have also become major concerns. As an example, New Jersey state government in the US announced an order on 29th November 2005 making New Jersey the first state to have mandatory standards for the chemical plant security.

We still need carbon-based feedstock for manufacturing chemicals and organic materials, even if the energy problem is solved. The world today depends on carbon-based chemicals and organic materials which characterize the current civilizations and shape our life style in a wide range of applications, from clothes to shoes, from kitchen to bedroom, from homes to offices, from cosmetics to automobiles, from plastic beverage bottles to gasoline tanks, from commercial buildings to manufacturing plants, from heat-resistant polymers to aerospace materials, and from computers to mobile cell phones. As the resources of fossil fuels are being consumed rapidly, we should be concerned equally for the future supplies of feedstock for carbon-based chemicals and organic materials.

4. Challenges of CO₂ control and utilization

4.1. Challenges for control of CO₂ emissions

Fig. 4 outlines the key issues related to greenhouse gas control and utilization. The basic issues of GHG control involve energy economics, policy regulations, environmental protection and global climate change. The anthropogenic emissions of GHGs are due mainly to the fossil energy utilization. Control of CO_2 emissions is among most important areas of GHG control. The economic development in the US has benefited greatly from relatively cheap energy sources. The idea for regulation of CO_2 emissions by ratifying Kyoto

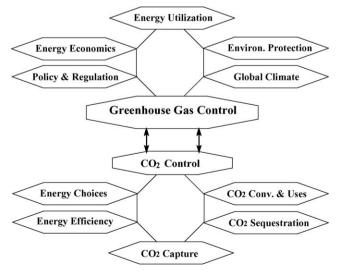


Fig. 4. Key issues related to control and utilization of greenhouse gas including CO₂ (modified after [47]).

Protocol has not been popular in the US, although emissions of pollutants (SO_x , NO_x , CO, HC, particulate matters, etc.) are being regulated strictly in the US However, carbon tax has already been implemented for CO_2 emissions in some countries in Western Europe.

The global strategy for CO₂ control should involve thinking and actions outside CO₂, as shown in Fig. 4. There are no easy solutions without involving major changes in the energy systems, and there are various opinions regarding the issues related to energy supply, greenhouse gas, and climate change. For the global challenges on energy and GHG problems, innovative ideas and revolutionary approaches are needed towards the long-term solution. There are five broadly defined technical options for control of CO₂ emissions: energy choices, energy efficiency, CO₂ capture, CO₂ sequestration, and CO₂ utilization. These options are briefly discussed below.

Energy choice is the basic consideration for selecting the primary energy input for new installations of energy systems or for switching between different forms of energy for existing energy systems. One can reduce the CO_2 emission per million BTU by selecting the less CO_2 -intensive form of energy, for example, natural gas versus coal. An empirical rule of thumb is the atomic hydrogen-to-carbon ratio; the higher the H/C ratio, the lower the amount of CO_2 per million BTU. The H/C ratio decreases in the order of natural gas (about 4), petroleum (about 1.8–2.0), and coal (about 0.8–1.2). Fuel decarbonization before combustion is an option that is being studied as one way to mitigate CO_2 emissions to atmosphere [5], which is also related to the above discussion with respect to fuel H/C ratio changes.

An alternative is to use more renewable energy. Common renewable energy forms include hydropower, solar energy, wind energy, and biomass. Biomass and animal wastes are opportunity fuels whose use is also encouraged where available. They are not completely CO₂-neutral, because the collection, transportation and processing of biomass consume energy and fuels. When fertilizers are used for biomass production, the processes and the energy required for fertilizer production should also be considered for counting CO₂ emissions. The issues of major concern for biomass include the regional and seasonal availability as well as energy density and energy demand-supply balance. Combination of biomass with fossil energy in certain ways including conversion is also being explored [51].

Solar energy could also be used in selected endothermic chemical processes to reduce the need for using heat from combustion of fossil fuels, which also produces CO₂. The issues of concern are availability, energy density, energy efficiency, and capital cost.

Development for improved energy efficiency is an important area that has a major impact on CO₂ reduction. Existing energy utilization systems in the fossil fuel-based electricity generators in the US have an average efficiency of about 35%. The efficiencies for the automobiles are even lower, less than 20% [52]. Development and implementation of new energy utilization systems such as IGCC for coal-based power plants,

GTCC for natural gas-based power plants, and fuel cell-based hybrid motors for transportation, could increase the energy efficiencies significantly, by 30% or more. The same principle can be applied to chemical industry, where more efficient process or more selective catalyst can make a process such as oxidation reaction more selective such that CO₂ formation is minimized at the source, thus improving the process efficiency and conserving hydrocarbon resource [161].

4.2. Needs for CO₂ utilization for sustainable development

CO₂ is not just a greenhouse gas, but also an important source of carbon for making organic chemicals, materials and carbohydrates (e.g., foods). As will be discussed below, various chemicals, materials, and fuels can be synthesized using CO₂, which should be a sustainable way in the long term when renewable sources of energy such as solar energy is used as energy input for the chemical processing.

The amount of CO₂ that is present in the global atmosphere is very large, 788 billion tons in 2002 [53]. The 2002 global CO₂ emission from fossil fuels is estimated to be 6975 million metric tons of carbon, which represents an all-time record and a 2% increase from 2001 [45]. As a comparison to show the magnitude of the amount of the carbon emitted to air, the total worldwide petroleum consumption in 2001 was 3913 million metric tons (Table 1). It is important to note that the amounts of CO₂ emitted as the concentrated CO₂-rich flue gases from electric power plants and effluent gases from industrial manufacturing plants have become much higher than the amounts of carbon used for making most chemicals, organic materials and liquid transportation fuels [47].

4.3. Challenges for CO₂ utilization

The energetic issues of CO_2 can be understood better by comparison with industrial gas products such as ethylene and synthesis gas. Production processes of synthesis gas and ethylene often consumes energy but this not a concern since the products are important and valuable as industrial chemicals. Because CO_2 does not present itself as a high-value product that has wide-spread industrial applications, the energy-consuming conversion is viewed as unfavorable and against the economics.

Apart from the global challenges discussed, the challenges and the barriers for CO_2 conversion and utilization, as outlined below, are primarily due to the lack of value-based driving forces:

- Costs of CO₂ capture, separation, purification, and transportation to user site.
- Energy requirements of CO₂ chemical conversion (plus source and cost of H₂ and/or other co-reactants if involved).
- Market size limitations, little investment-incentives and lack of industrial commitments for enhancing CO₂-based chemicals.
- Lack of socio-economical driving forces for enhanced CO₂ utilization.

5. Strategies for CO₂ conversion and utilization

5.1. Strategic objectives

The strategic objectives of CO₂ conversion and utilization should be based on the unique physical and chemical properties and could include one or more of the broadly defined targets listed below, which will be further elaborated in subsequent sections.

- Use CO₂ for environmentally benign physical and/or chemical processing that adds value to the process.
- Use CO₂ to produce industrially useful chemicals and materials that adds value to the products.
- Use CO₂ as a beneficial fluid for processing or as a medium for energy recovery, contaminant removal, and emission reduction.
- Use CO₂ recycling involving renewable sources of energy such as biomass and solar energy or 'waste' energy to conserve carbon resources for sustainable development.

Table 3 provides a list of the physical and chemical properties of CO₂ [9,10,54,55]. CO₂ may be used as a gas, liquid, and solid. At atmospheric pressure, CO₂ is about 1.5 times as heavy as air [9]. CO₂ may be liquefied by compressing to 2 MPa and cooling to -18 °C, or by compressing to higher pressure of 5.78 MPa at 21 °C. If liquid CO₂ is cooled further to -56.6 °C, the pressure drops to 0.518 MPa, solid CO₂ is formed which co-exists with liquid and gaseous CO₂ and this is known as the triple point. The solid CO₂ can sublimate directly into gas (without going through the liquid phase) upon absorbing heat, and thus it is called dry ice. CO₂ cannot exist as liquid below the triple point. If the pressure on dry ice is reduced to atmospheric pressure, the temperature of dry ice drops to -78.5 °C. CO₂ cannot be liquefied above 31 °C, the critical temperature. It exists as supercritical fluid when the temperature and pressure are above 31 °C (Tc) and 7.38 MPa (Pc), respectively.

5.2. Technical approaches to CO₂ utilization

isted below are some strategic considerations for developing technologies for CO₂ conversion and utilization, but this list is by no means exclusive. Fig. 5 shows the scope of chemical processes for CO₂ conversion [47]. The research on CO₂ conversion and utilization is a proactive approach to the sustainable development. Out-of-the-box thinking, multi-disciplinary and integrated research should be encouraged involving chemistry, materials, catalysis, chemical engineering, physics, system engineering and other disciplines, but the ideas should not be down-selected too early just based on the current process economics.

- Select concentrated CO₂ sources for CO₂ capture and/or utilization; aim for on-site/nearby uses if possible.
- Use CO₂ to replace a hazardous or less-effective substance in existing chemical processes for making products with significant volumes.
- Use renewable sources of energy or 'waste' energy for CO₂ conversion and utilization whenever possible.

Table 3
Physical and chemical properties of carbon dioxide

Property	Value and unit
Molecular weight	44.01 g/mol
Sublimation point at	−78.5 °C
1 atm (101.3 kPa)	
Triple point at 5.1 atm	−56.5 °C
(518 kPa)	
Triple point pressure	5.185 bar
Critical temperature (T_c)	31.04 °C
Critical pressure (P_c)	72.85 atm (7383 kPa)
Critical density (ρ_c)	0.468 g/cm ³ or 468 g/L
•	or 468 kg/m ³
Gas density at 0 °C	1.976 g/L
and 1 atm (101.3 kPa)	
Liquid density at	
0 °C and 1 atm	928 g/L
(101.3 kPa)	
25 °C and 1 atm	0.712 vol/vol
CO ₂ (101.3 kPa)	
Solid density	1560 g/L
Specific volume at	$0.546 \text{ m}^3/\text{kg}$
1 atm and 21 °C	
Latent heat of vaporization	
At the triple point (-78.5 °C)	353.4 J/g
At 0 °C	231.3 J/g
Viscosity at 25 °C and 1	0.015 cP (mPas)
atm CO ₂ (101.3 kPa)	0.013 C1 (III us)
um 20 ₂ (101.5 kru)	
Solubility in water at	
$0~^{\circ}\text{C}$ and 1 atm (101.3 kPa)	0.3346 g CO ₂ /100 g-H ₂ O
	or 1.713 mL CO ₂ /mL-H ₂ O
	at 0 °C
25 °C and 1 atm (101.3 kPa)	$0.1449 \text{ g CO}_2/100 \text{ g-H}_2\text{O}$
	or 0.759 mL
	CO ₂ /mL-H ₂ O at 25 °C
Heat of formation at	-393.5 kJ/mol
25 °C, ΔH°gas	
Entropy of formation	213.6 J/K mol
at 25 °C, S°gas	
Gibbs free energy of	-394.3 kJ/mol
Heat capacity under	37.1 J/mol °C
constant pressure at 25 °C	
Heat capacity at	28.1 J/mol °C
constant volume at 25 °C	
Thermal conductivity	14.65 mW/(m k)
Viscosity at 0 °C	0.0001372 Poise
formation at 25 °C, ΔG°gas Heat capacity under constant pressure at 25 °C Heat capacity at constant volume at 25 °C Thermal conductivity	28.1 J/mol °C 14.65 mW/(m k)

- Convert CO₂ along with other co-reactants into chemical products that are industrially useful at significant scale.
- Fix CO₂ into environmentally benign organic chemicals, polymer materials or inorganic materials.
- Electric power generation with more efficient CO₂ capture and conversion or utilization.
- Take value-added approaches for CO₂ sequestration coupled with utilization.

Examples of the concentrated sources of CO₂ include flue gas from coal-fired and natural gas-fired electric power plants, effluents from partial oxidation unit in petrochemical plants, effluents from gasification units and water–gas-shift units in hydrogen plants and ammonia plants.

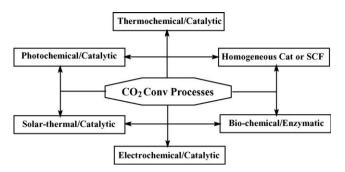


Fig. 5. Scope of chemical processes for CO₂ conversion (modified after [47]).

5.3. Thermodynamic considerations of CO₂ conversion

Fig. 6 illustrates the thermodynamics of CO_2 conversion, where Gibbs free energy of CO_2 and related substances are shown along with CO_2 . The data for plotting Fig. 6 were taken mainly from comprehensive chemical handbooks [54,56]. CO_2 is a highly stable molecule. Consequently a substantial input of energy, effective reaction conditions, and often active catalysts, are necessary for chemical conversion of CO_2 . In other words, many reactions for CO_2 conversion involve positive change in enthalpy, ΔH , and thus they are endothermic.

However, it should be pointed out that the chemical reactions are driven by the difference in Gibbs free energy between the products and reactants at certain conditions, as shown by the equation below.

$$\Delta G = \Delta H - T \Delta S \tag{1}$$

It is true that endothermic reactions consume energy. However, endothermic reactions can be feasible and indeed useful. There appears to be some perceptions by many people that CO₂ conversion would be so endothermic that its conversion would not be feasible. There are many large-scale industrial manufacturing plants that are operated based on endothermic reactions in the chemical industry, and these include pyrolysis (thermal cracking) of hydrocarbons for manufacture of ethylene and propylene, dehydrogenation reaction for manufacture of petrochemicals such as styrene from ethylbenzene, and steam reforming of hydrocarbons for producing synthesis gas and hydrogen.

A simple comparison between steam reforming (Eq. (2)) and CO_2 reforming of CH_4 (Eq. (3)) can illustrate this point. Steam reforming is already used in large scale in the gas industries and fertilizer industries worldwide. Both reactions are endothermic that require over 200 kJ of energy input per mole of CH_4 , but CO_2 reforming requires about 20% more energy input compared to steam reforming. The two reactions give synthesis gas products with different H_2/CO molar ratios; both are useful for certain applications.

$$CH_4 + H_2O = CO(g) + 3H_2(g);$$

 $\Delta H^{\circ} = +206.3 \text{ kJ/mol CO}_2$ (2)

$$CH_4 + CO_2 = 2 CO (g) + 2H_2O (g);$$

 $\Delta H^{\circ} = +247.3 \text{ kJ/mol CO}_2$ (3)

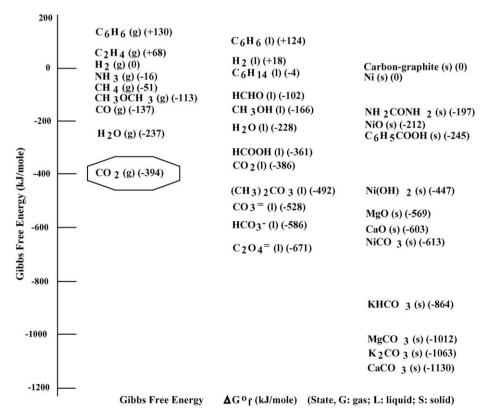


Fig. 6. Thermodynamic considerations for CO₂ conversion and utilization involving co-reactants (modified after [47]).

(5)

Fig. 6 reveals that it is more energy-demanding if one were to use only CO_2 as a single reactant, but it becomes easier thermodynamically if CO_2 is used as a co-reactant with another substance that has higher Gibbs free energy, such as CH_4 , carbon (graphite) and H_2 . This trend can also be seen by the change in the reaction heat for reactions with CO_2 as the single reactant (Eq. (4)) and with CO_2 as a co-reactant (Eq. (5)).

$$CO_2 = CO + \frac{1}{2}O_2; \Delta H^{\circ} = +293 \text{ kJ/mol CO}_2$$
 (4)

$$CO_2 + H_2 = CO(g) + H_2O(g); \Delta H^{\circ} = +51 \, kJ/molCO_2$$

were 5.4. Current status of CO₂ conversion and utilization

Table 4 lists the existing and emerging applications of CO_2 in liquid, solid, and gaseous states [9,10,57–59]. The current global market for merchant CO_2 , measured by the amount of CO_2 sold in the market, which excludes in-plant CO_2 utilized by manufacturers, is estimated to be \$3.2 billions/year in 2003 [53].

Currently, CO₂ is used as refrigerant for food preservation, beverage carbonation agent, supercritical solvent, inert medium (such as fire extinguisher), pressurizing agent, chemical reactant (urea, etc.), neutralizing agent, and as gas for greenhouses. Solid CO₂ (dry ice) has a greater refrigeration

Table 4 Current status of CO₂ uses in various industrial applications [9,10,57–59]

Sectors	Industrial applications
Chemicals	# CO ₂ is used in chemical synthesis and for controlling reactor temperatures. # CO ₂ is employed to neutralize alkaline effluents. # CO ₂ is used as a blowing agent for polyurethane and polystyrene foam production and for blow molding manufacturing of plastic bottles, and containers. # CO ₂ is used under supercritical conditions for purifying or dying polymer, animal or vegetable fibers.
Pharmaceuticals	# CO_2 is used for making chemicals such as salicylic acid and Aspirin; for use as an inert gas, and for supercritical fluid extraction. # CO_2 is used for product transportation at low temperature (-78 °C or -108 °F) and also acidification (pH) of wastewater.
Foodstuffs	# Liquid CO ₂ can be used as cryogenic fluid in chilling or freezing operations or as dry ice for temperature control during the storage and distribution of foodstuffs. # Packaging of foodstuffs to increase the shelf life of many food products due to its inerting properties and its growth inhibiting effect of CO ₂ on micro-organisms. # Stunning of pigs and poultry in slaughterhouses instead of using electrical stunning.
Beverage	# Carbonation of beverages such as soft drinks, mineral water or beer; # supercritical CO ₂ is used to remove caffeine from coffee beans by extraction. # CO ₂ is used as shielding gas for preserving drink quality, and propellant gas for emptying tanks of drinks # CO ₂ is also used in drinking water treatment in modern water works together with lime or chalk.
Healthcare	# CO ₂ produces close-to-physiologic atmospheres for the operation of artificial organs. # CO ₂ is used as a component in a mixture of oxygen or air as respiratory stimulant to promote deep breathing. It is also used for the surgical dilation by intra-abdominal insufflations.
Environment	# Small amount of liquid CO ₂ can be used in recycling of waters from Acid Mine Drainage. # Waste water treatment and waste liquid treatment by injection of CO ₂ for the pH of liquid effluents. CO ₂ is an excellent alternative to sulfuric acid for pH balance control.
Pulp and paper	# CO ₂ enables sharp tuning of the pH of recycled mechanical or chemical pulps after an alkaline bleaching. # CO ₂ can be used in the Tall Oil neutralization and for increasing the performance of paper machines. # Precipitated calcium carbonate obtained from CO ₂ and CaO is used as a whitener for the paper industry.
Electronics	# CO ₂ is usually used as a cooling medium in environmental testing of electronic devices. # CO ₂ can be used to add conductivity to ultrapure water # CO ₂ can also be used as an environmentally friendly supercritical fluid for removing photoresist from wafers
Metals industry	# CO ₂ is typically used as an inert gas or for environment protection. # CO ₂ is used for red fume suppression during scrap and carbon charging, for nitrogen pick-up reduction during tapping and for bottom stirring. # CO ₂ is used for fume suppression during ladle transfer of matte (Cu/Ni production) or bullion (Zn/Pb production) in the non ferrous metallurgy. # Special grades of CO ₂ are used in CO ₂ lasers.
Laboratories & analysis	$\#$ Supercritical CO $_2$ is the mobile phase in both supercritical chromatography and supercritical fluid extraction applications.
Safety and others	# CO ₂ is used as carbon dioxide snow for fire extinguishers; # pH control and regulation of waste waters, swimming pools, etc.

effect than water ice. Dry ice is also usually much colder than water ice, and the dry ice sublimates to a gas as it absorbs heat. It should be noted that the use of CO_2 for refrigeration does not directly contribute to reduction of CO_2 emissions.

There exist some chemical processes for CO_2 conversion in chemical industry, for which synthesis of urea from ammonia and CO_2 (Eq. (6)) and the production of salicylic acid from phenol and CO_2 (Eq. (7)) are representative examples. Urea is used for making various polymer materials and also for producing fertilizers. As an example of the usefulness of salicylic acid, acetyl salicylic acid is used for making Aspirin, a widely used common medicine.

5.4.1. Urea synthesis

$$CO_2 + 2NH_3 = H_2N-CO-NH_2 + H_2O$$
 (6)

5.4.2. Salicylic acid synthesis

$$C_6H_5-OH + CO_2 = C_6H_4(OH)COOH$$
 (7)

Urea is used in organic chemical industry. It is a preferred solid nitrogen fertilizer because of its high nitrogen content (46%). The worldwide production of urea in 2002 was about 110 million metric tons, which contains 51.8 million metric tons of nitrogen with an estimated value of \$11.5 billion USD [59]. This corresponds to about 81 million metric tons of CO₂, and 22 million metric tons of carbon.

5.5. Needs for industrial and government commitments

It is important for the people and governments in the world to realize that not only the universities and research institutions but also the industries are needed for taking real actions on CO₂ conversion and utilization, beyond counting and trading of emissions credits, because there are potential opportunities as well as long-term benefits. The industrial investments in the CO₂-based new technology developments should be encouraged and facilitated by the governments. The university research in CO₂-based new technology should be encouraged by government grants without the requirement for cost-share or matching funds from the university. Industry-university collaboration with partial government support is one effective path forward. The real advances will not be possible without real industrial involvement. The truly successful industrial leaders in the future manufacturing industries are likely those who have invested seriously in developing more environmentally friendly and GHG-less technologies that give them the competitive edge in the increasingly environment-conscious global markets and also the public acceptance and support.

Some people may think the CO_2 utilization is too costly or too far away for the practical application, and that any processes using CO_2 are not likely to be significant or economical. Things may change if all the cost factors are considered and environmental benefits become a cost factor. As a recent example of the significance of the CO_2 issue, eight states in the

US (CA, CT, IA, NJ, NY, RI, VT, WI) and New York City jointly filed a law suit on 21st July 2004 against five large energy companies quoted as "Global Warming Polluters" that collectively produce 650 million tons of CO₂ each year [61].

6. Research directions on CO₂ conversion & utilization

Listed below are some specific research directions and development issues, which involve new process concepts as well as expansion of known applications. Fig. 7 shows the existing and emerging application areas of CO₂ conversion and utilization [47].

- For applications that do not require pure CO₂, develop effective processes for using the CO₂-concentrated flue gas from industrial plants or CO₂-rich resources such as CO₂-rich natural gases without CO₂ separation.
- For applications that need pure CO₂, develop more efficient and less-energy intensive processes for separation of CO₂ selectively without the negative impacts of co-existing gases such as H₂O, O₂, and N₂.
- Replace a hazardous or less-effective substance in existing processes with CO₂ as an alternate medium or solvent or coreactant or a combination of them
- Make use of CO₂ based on the unique physical properties as supercritical fluid or as either solvent or anti-solvent
- Make use of CO₂ based on the unique chemical properties for CO₂ to be incorporated with high 'atom efficiency' such as carboxylation and carbonate synthesis
- Produce useful chemicals and materials using CO₂ as a reactant or feedstock
- Use CO₂ for energy recovery while reducing its emissions to the atmosphere by sequestration
- Recycle CO₂ as C-source for chemicals and fuels using renewable sources of energy.
- Convert CO₂ under either bio-chemical or geologic-formation conditions into "new fossil" energies.

Some of the above strategic directions and research issues are further elaborated below by specific case studies on CO_2 conversion and utilization based on the recent literature. Many processes could be designed for using CO_2 , but the chemicals and materials that have large market demands

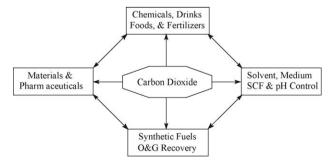


Fig. 7. The existing and emerging application areas of CO₂ conversion and utilization (modified after [47]).

are relatively limited [11,12]. An existing industrial process is urea synthesis, which has already found industrial application as fertilizer and as monomer for thermosetting polymers. Expanding applications of ureabased polymers can create more demand on $\rm CO_2$ and $\rm NH_3$ for urea synthesis.

6.1. Using CO_2 without separation for syngas: trireforming versus CO_2 reforming

For the development of new processes, one of preferred approaches is to explore alternate processes for using CO_2 from industrial effluent gases as a co-reactant in making chemicals that have relatively large market or potentially large demand in the near future. The production of synthesis gas ($\mathrm{CO} + \mathrm{H}_2$) is a potential area for large-scale CO_2 conversion and utilization. CO_2 reforming of CH_4 has been studied and reported extensively in the literature [28,29].

Tri-reforming is a recently proposed process concept as a new alternative to CO_2 reforming for syngas [11,12,62–65]. In this section, we discuss the two reforming processes based on experimental studies in our laboratory.

Table 5 Properties of fresh Ni/Na-Y and Ni/Al $_2$ O $_3$ catalysts prepared by IWI method and the used catalysts after reforming

Fresh catalysts	8 wt.% Ni/Na-Y (IWI)	6.6 wt.% Ni/Al ₂ O ₃ (IWI)
-	1NI/1Nd-1 (1 W1)	141/Al ₂ O ₃ (141)
BET area ($m^2 g^{-1}$ -cat.)	476	185
H/Ni (fresh catalyst)	0.38	0.27
CO/Ni (fresh catalyst)	0.35	0.23
Used Catalysts ^a	8 wt.%	6.6 wt.%
	Ni/Na-Y (IWI)	Ni/Al ₂ O ₃ (IWI)
H/Ni (Ni dispersion from H ₂)	0.32	0.08
CO/Ni (Ni dispersion from CO)	0.3	0.05
Carbon deposit (wt.%)	27.5 [66.3] ^a	82.3 [84.5] ^a

 $[^]a$ Values outside brackets are after A-P reforming (1 atm) at 750 $^{\circ}{\rm C}$ for 300 min, and those in brackets are after H-P reforming (27 atm) at 750 $^{\circ}{\rm C}$ for 300 min.

6.1.1. CO₂ Reforming over Ni catalyst

Table 5 shows the physical and chemical properties of the Ni catalysts supported on Na-Y and γ-Al₂O₃ prepared by incipient wet impregnation method. (IWI) [11,12]. The surface area of 8 wt.% Ni/Na-Y catalyst is much higher than that of 6.6 wt.% Ni/Al₂O₃ catalyst. CO₂ reforming of CH₄ was studied over Ni/

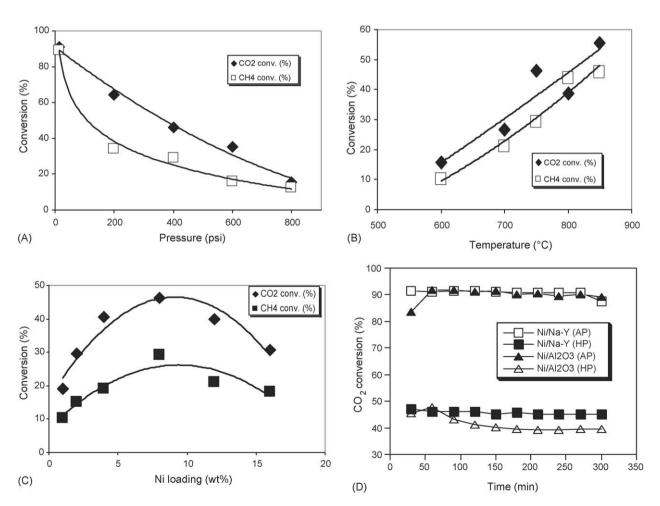


Fig. 8. CO₂ reforming of CH₄ over supported Ni catalysts. (A) Effect of reaction pressure on CO₂ and CH₄ conversion in CO₂ reforming of CH₄ on 8 wt.% Ni/Na-Y (IWI) catalyst at 750 °C; (B) Effect of reaction temperature on CO₂ and CH₄ conversion over 8 wt.% Ni/Na-Y (IWI) catalyst at 27 atm (400 psi); (C) Effect of Ni loading on CO₂ and CH₄ conversion over Ni/Na-Y (IWI) catalyst at 27 atm and 750 °C; (D) CO₂ conversion as a function of TOS for 8 wt.% Ni/Na-Y (IWI) and 6.6 wt.% Ni/Al₂O₃ (IWI) catalysts during CO₂ reforming of CH₄ at 750 °C under 1 atm (AP) and 27 atm (HP).

Conversion and product yields for CO ₂ r	eforming of CH ₄ on 8 wt.% N	Ni/Na-Y and 6.6 wt.% Ni/Al ₂ O ₃ ca	atalysts prepared by IWI method
Table 6			

Catalyst	8 wt.% Ni/Na-Y	8 wt.% Ni/Na-Y	6.6 wt.% Ni/Al ₂ O ₃	6.6 wt.% Ni/Al ₂ O ₃
Pressure-Temp	1 atm-750 °C	27 atm-750 °C	1 atm-750 °C	27 atm-750 °C
CO ₂ conversion (%)	91.1	46.2	91.8	43.0
CH ₄ conversion (%)	89.1	29.1	95.3	33.3
CO yield (%)	85.6	42.6	81.9	57.9
H ₂ yield (%)	68.9	40.7	66.3	29.6
H ₂ /CO	0.80	0.96	0.81	0.51

Na-Y and Ni/Al₂O₃ catalysts at atmospheric pressure as well as high pressure (27 atm).

Fig. 8 shows the effects of pressure (from 1 to 53 atm at 750 °C) and influence of temperature (from 200 to 800 °C at 27 atm) on CO₂ and CH₄ conversion in CO₂ reforming of CH₄ over 8 wt.% Ni/Na-Y (IWI) catalyst prepared in our laboratory [11,12]. The influences of Ni metal loading are also shown. Table 6 shows the CO and H₂ product yields for CO₂ reforming of CH₄ on 8 wt.% Ni/Na-Y and 6.6 wt.% Ni/Al₂O₃ catalysts along with the H₂/CO ratios of the syngas products at 1 atm and 27 atm [11,12]. Catalyst activity results show remarkable differences between atmospheric and high-pressure reaction. Both catalysts showed high conversion at atmospheric pressure whereas the conversion drastically decreased at high pressure.

Fig. 9 shows that there is a significant amount of carbon deposits formed on the Ni catalysts supported on Al₂O₃, particularly under elevated pressures [11,12]. The use of Y zeolite can reduce the carbon deposits significantly, but this reduction becomes insignificant at elevated pressures. The SEM photos shown in Fig. 10 reveal that filamental carbon deposits (also called carbon nano-tubes) are formed on the surfaces of Ni catalysts [11,12]. Higher carbon formation at high pressure was observed as filamental carbon compared to at atmospheric pressure.

Remarkable differences in CO_2 reforming of CH_4 at atmospheric pressure and high pressure were observed. The differences in catalyst activity at 1 atm and 27 atm are in large part due to thermodynamic limitations. The results are consistent with a vast amount of literature on CH_4 reforming. Both Ni/Na-Y

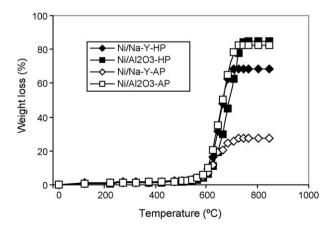


Fig. 9. Temperature programmed oxidation profiles from TGA of used 8 wt.% Ni/Na-Y, 6.6 wt.% Ni/Al₂O₃ catalysts after CO₂ reforming of CH₄ at 1 atm (AP) and 27 atm (HP) and 750 $^{\circ}$ C.

and Ni/Al $_2$ O $_3$ were reasonably active at atmospheric pressure with high CO $_2$ and CH $_4$ conversion (>89%). The conversions over the same catalysts show a drastic decrease at high pressure (27 atm), but the change in pressure had different impacts on CO $_2$ and CH $_4$ conversions, and varied effects on H $_2$ /CO ratios of the syngas products. Carbon formation on some catalysts that display a superior performance at atmospheric pressure may be exacerbated at high pressure.

Low conversions of CO_2 and CH_4 and low yields of CO and H_2 were obtained from CO_2 reforming of CH_4 at high pressure of 27 atm with both laboratory and commercial Ni-based steam reforming catalysts, and all the catalysts suffered significant carbon formation within 300 min of TOS (time on stream) at high pressure.

Increasing reaction temperature increased catalyst activity whereas increasing pressure has an opposite effect. On Ni/Na-Y, significant effects of Ni loadings on catalyst activity were observed and 8 wt.% Ni loading on Na-Y gives optimum catalyst activity. TPO (temperature programmed oxidation) characterization of carbon deposits in used catalysts showed severe carbon formation at high pressure in the case of Ni/Na-Y whereas, Ni/Al₂O₃ results in severe carbon formation both at atmospheric as well as high pressure CO₂ reforming of CH₄. SEM investigation of used catalysts show remarkable effect of type of support (Na-Y or Al₂O₃) used and catalyst preparation method on the carbon structure.

6.1.2. CO₂ reforming over Rh catalysts

To see if we can eliminate carbon by using noble metal catalysts, we examined various supported Rh catalysts [67]. Laboratory-prepared Rh/Na-Y and Rh/Al $_2$ O $_3$ catalysts (Table 7) were examined in CO $_2$ reforming of CH $_4$ at atmospheric pressure (1 atm) and high pressure (27 atm).

Fig. 11 and Table 8 show the CO_2 and CH_4 conversion for CO_2 reforming of CH_4 at 750 °C under 27 atm over rhodium catalysts. The TOS profiles in Fig. 11A illustrate that the Rh catalysts display a stable performance against deactivation at the atmospheric pressure, but begin to deactivate within the first few hours at high pressure of 27 atm. The use of higher pressure substantially decreased CO_2 and CH_4 conversion and increased catalyst deactivation during CO_2 reforming of CH_4 , compared to runs at 1 atm for both Rh/Na-Y and Rh/Al $_2O_3$ catalysts.

Deactivation was related to carbon formation, and the type of support also affects both the amount and structure of the carbon deposits. The deactivation is more rapid with Rh/Al₂O₃ catalyst than with Rh/Na-Y catalyst during high-pressure CO₂ reforming. Relative to the runs at atmospheric pressure, the more

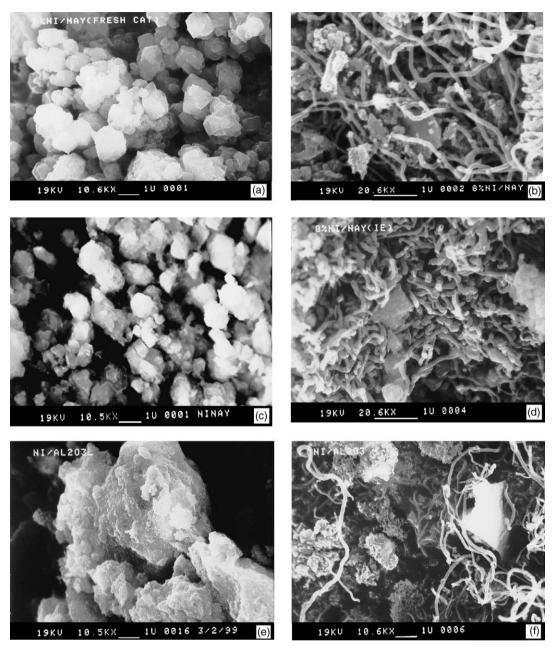


Fig. 10. SEM photographs of fresh (left) and used (right) catalysts after CO_2 reforming of CH_4 at 27 atm and 750 °C: 8 wt.% Ni/Na-Y (IWI) (a and b), 7.9 wt.% Ni/Na-Y (IE) (c and d), 6.6 wt.% Ni/Al₂O₃ (IWI) (e and f).

pronounced decrease in catalyst activity with time on stream at 27 atm can be attributed mainly to enhanced carbon formation. On Na-Y, Rh is dispersed on the outer surface of the zeolite as well as in its inner pores. Carbon formation that takes place on the outer surface of the catalyst can block the active sites.

The reaction system pressure significantly affects the CO_2 and CH_4 conversion over Rh catalysts and CO and H_2 yields as well as H_2/CO ratios during CO_2 reforming of CH_4 . Both CO_2 and CH_4 conversion decrease significantly with increasing pressure from atmospheric pressure to 27 atm. The reaction pressure has different impacts on H_2 formation and CO formation, and thus increasing pressure not only decreases CO_2 and CH_4 conversion, but also can change the H_2/CO ratio of the products.

Catalyst stability during CO_2 reforming of CH_4 can significantly decrease upon increasing pressure from 1 atm to 27 atm for Rh/Na-Y and Rh/Al $_2O_3$. Some Rh catalysts that showed superior performance at atmospheric pressure can begin to deactivate within hours at high pressure. Significant effects of Rh loadings on catalyst activity were observed for Rh/Na-Y and Rh/Al $_2O_3$, and 2.5 wt.% seems to be optimum Rh loading to get maximum activity.

Fig. 12 shows the SEM of Rh Catalysts after CO₂ reforming of CH₄ at 27 atm and 750 °C (300 min TOS). 2.5 wt.% Rh/Na-Y (IWI) (a: fresh; b: used), 2.5 wt.% Rh/Al₂O₃ (IWI) (c: fresh; d: used). It is clear that carbon deposition even occurs on the Rh-based noble metal catalysts. Interesting, a completely

Table 7 Physicochemical properties of 1 wt.% Rh/Na-Y and 1 wt.% Rh/Al $_2$ O $_3$ catalysts prepared by IWI using rhodium chloride precursor supported on Na-Y and Al $_2$ O $_3$

Catalyst Precursor	Rh chloride	Rh chloride
Fresh Catalyst	Rh/Na-Y	Rh/Al ₂ O ₃
Metal loading (wt.%)	1.0	1.0
BET area (m ² g ⁻¹ -cat.)	628	177
H/M (fresh catalyst)	0.66	_
CO/M (fresh catalyst)	0.55	_
Used Catalyst		
H/M (used catalyst)	0.42	_
CO/M (used catalyst)	0.4	_
Carbon deposit (wt.%) ^a	5.3 [7.4] ^a	0.5 [1.4] ^a

 $^{^{\}rm a}$ Values outside brackets are after A-P reforming (1 atm; 750 °C; TOS:300 - min); values inside brackets are after H-P reforming (27 atm; 750 °C; TOS:300 min).

different morphology of the carbon deposits was observed after ${\rm CO_2}$ reforming on 2.5 wt.% Rh/Na-Y (IWI).

TPO characterization of carbon deposits in used catalysts (in Fig. 11D) showed that, Rh supported on Na-Y and Al₂O₃ show

much smaller amounts of carbon deposition after the reaction compared with Ni catalysts. SEM investigation of used catalysts shows different effect of type of support (Na-Y or Al_2O_3) on the carbon structure. A very unusual form of carbon on used Rh/Na-Y catalyst was observed by SEM in Fig. 12, where the carbon deposits in the form of closely-knit coils dominate.

6.1.3. Tri-reforming over Ni catalysts

A novel process concept called tri-reforming of CH_4 has been proposed in our laboratory using CO_2 in the flue gases from fossil fuel-based power plants without CO_2 separation [62,66; Song, 2000]. The tri-reforming process is a synergetic combination of CO_2 reforming, steam reforming, and partial oxidation of CH_4 in a single reactor for effective production of industrially useful syngas. Both experimental testing and computational analysis show that tri-reforming can not only produce synthesis gas $(CO + H_2)$ with desired H_2/CO ratios (1.5-2.0), but also could eliminate carbon formation which is usually a serious problem in the CO_2 reforming of CH_4 [63]. These two advantages have been demonstrated by tri-reforming of CH_4 in a fixed-bed flow reactor at 850 °C with supported nickel catalysts.

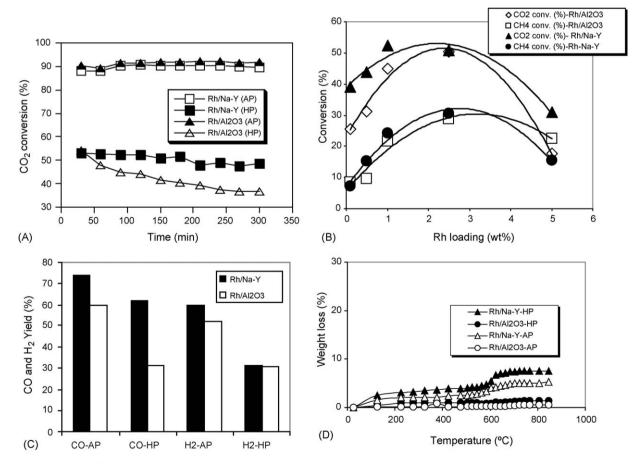


Fig. 11. CO_2 reforming of CH_4 over rhodium catalysts. (A, top left) CO_2 conversion for 1 wt.% Rh/Na-Y and 1 wt.% Rh/Al₂ O_3 at 1 atm (AP) and 27 atm (HP) at 750 °C. (Rh chloride was used for IWI); (B, top right) Effect of Rh loading on CO_2 and CH_4 conversion over Rh/Na-Y (IWI) and Rh/Al₂ O_3 (IWI) catalysts in at 27 atm and 750 °C (TOS: 90 min); (C, bottom left) CO and H_2 yields for 1 wt.% Rh/Na-Y and 1 wt.% Rh/Al₂ O_3 at 1 atm (AP) and 27 atm (HP) at 750 °C. (Rh chloride was used for IWI) (TOS: 90 min); (D, bottom right) Temperature programmed oxidation profiles from TGA of used 1 wt.% Rh/Na-Y (IWI) and 1 wt.% Rh/Al₂ O_3 (IWI) used catalysts after CO_2 reforming of CH_4 at 1 atm and 27 atm and 750 °C (after TOS of 300 min).

Table 8 Conversion and product yields for CO_2 reforming at 750 °C over 1 wt.% Rh/Na-Y and 1 wt.% Rh/Al₂O₃ catalysts prepared by IWI using rhodium chloride precursor (TOS: 90 min)

Rh precursor	Rh chloride, IWI	Rh chloride, IWI	Rh chloride, IWI	Rh chloride, IWI
Catalyst	1 wt.% Rh/Na-Y	1 wt.% Rh/Na-Y	1 wt.% Rh/Al ₂ O ₃	1 wt.% Rh/Al ₂ O ₃
Pressure-Temp	1 atm-750 °C	27 atm-750 °C	1 atm-750 °C	27 atm-750 °C
CO ₂ conv. (%)	90.4	52.3	91.3	45.0
CH ₄ conv. (%)	89.1	24.2	89.1	21.5
CO yield (%)	78.6	25.7	82.1	51.6
H ₂ yield (%)	60.9	17.9	60.9	31.7
H ₂ /CO ratio	0.77	0.69	0.74	0.61

Fig. 13 shows the results of tri-reforming over various supported Ni catalysts in terms of: (A) CO_2 conversion; (B) H_2/CO ratios; and (C) CH_4 conversion in the tri-reforming reaction over 100 mg supported Ni catalysts at 1 atm with feed composition of $CH_4:CO_2:H_2O:O_2=1:0.48:0.54:0.1$ (CH_4 flow rate = 25 ml/min). The figure also includes a time-on-stream profile (D) for CO_2 and CH_4 conversions in the tri-reforming reaction over Ni/MgO/CeZrO catalyst at 850 °C under 1 atm with feed composition of $CH_4:CO_2:H_2O:O_2=1:0.475:0.475:0.1$ (CH_4 flow rate = 25 ml/min, in a stainless reactor).

Fig. 14 shows the features of the catalysts prepared for trireforming including: (A) CO₂-TPD over supports and supported Ni catalysts; (B) CO₂-TPD over supported Ni catalysts; (C) TPR over Ni catalysts supported on different supports; and (D) carbon deposits analysis on the used catalysts by TPO-IR after tri-reforming reaction.

Over 95% CH_4 conversion and about 80% CO_2 conversion can be achieved in tri-reforming over Ni catalysts supported on an oxide substrate. The type and nature of catalysts have a significant impact on CO_2 conversion in the presence of H_2O and

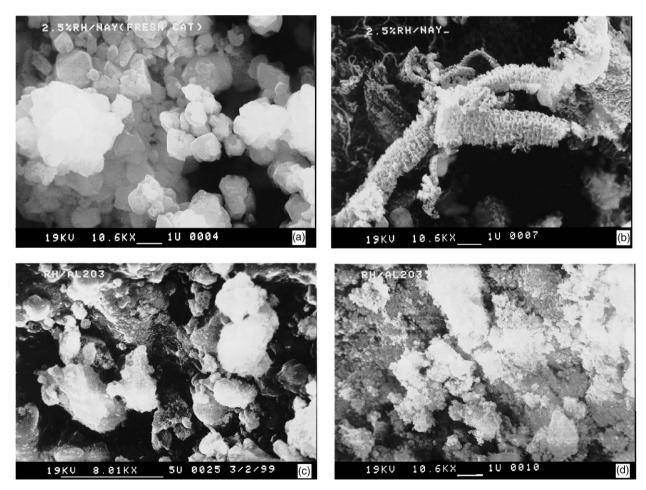
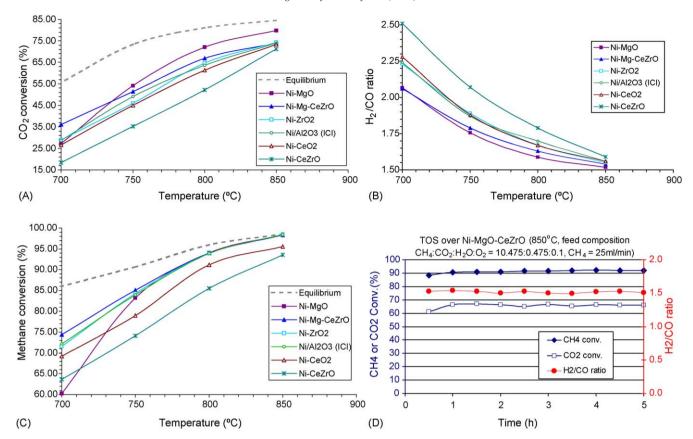



Fig. 12. SEM of Rh Catalysts after CO_2 reforming of CH_4 at 27 atm and 750 $^{\circ}C$ (300 min TOS). 2.5 wt.% Rh/Na-Y (IWI) (a: fresh; b: used), 2.5 wt.% Rh/Al₂O₃ (IWI) (c: fresh; d: used).

O₂ in tri-reforming in the temperature range of 700–850 °C. Among the catalysts tested for tri-reforming, their ability to enhance the conversion of CO₂ follows the order of Ni/ $MgO > Ni/MgO/CeZrO > Ni/CeO_2 \approx Ni/ZrO_2 \approx Ni/$ Al₂O₃ > Ni/CeZrO. The higher CO₂ conversion over Ni/MgO and Ni/MgO/CeZrO in tri-reforming may be related to the interaction of CO₂ with MgO and more interface between Ni and MgO resulting from the formation of NiO-MgO solid solution. Results of catalytic performance tests over Ni/MgO/CeZrO catalysts at 850 °C and 1 atm with different feed compositions confirm the predicted equilibrium conversions based on the thermodynamic analysis for tri-reforming of CH₄. Kinetics of trireforming were also examined [63]. The reaction orders with respect to partial pressures of CO₂ and H₂O are different over Ni/ MgO, Ni/MgO/CeZrO, and Ni/Al₂O₃ catalysts for tri-reforming. The lowest apparent activation energy for CO₂ conversion over Ni/MgO during the tri-reforming process indicates that CO₂ is relatively easier to activate over Ni/MgO than over Ni/Al₂O₃ catalyst [65].

Fig. 15 illustrates the proposed process concept for trireforming of natural gas using flue gas from fossil fuel-based power plants, where HT represents heat transfer or heat exchange including reactor heat up and waste heat utilization. The tri-reforming process could be applied, in principle, to the production of industrially useful syngas (for synthesis of methanol and dimethyl ether, for Fischer–Tropsch synthesis, and for high-temperature fuel cells) by reforming of natural gas using gas mixtures (containing CO_2 , H_2O , and O_2) as co-feeds. Such mixtures include, but not limited to, the flue gas from either natural gas-based electric power plant or coal-based electric power plants or the flue gas from partial oxidation units in chemical manufacturing facilities.

Although the tri-reforming concept was recently proposed and discussed at conferences [64,66,68] and in journals [63,65] and books [6,11,62], the tri-reforming process concept has already been applied by several research organizations; the term tri-reforming has been adopted in several recent reports by research groups in several countries [62,69–73] and also appeared in recent reviews [23,74]). The feasibility of tri-reforming reactions has been experimentally demonstrated in independent studies in other industrial and academic laboratories. It was proposed that tri-reforming could also be applied for converting low-quality CO2-rich natural gas into industrially useful syngas [47]. Recently, trireforming has been demonstrated at pilot plant scale in Korea [69,70]. Most recently, the proposed tri-reforming concept has been demonstrated for solid oxide fuel cells in laboratory scale [73].

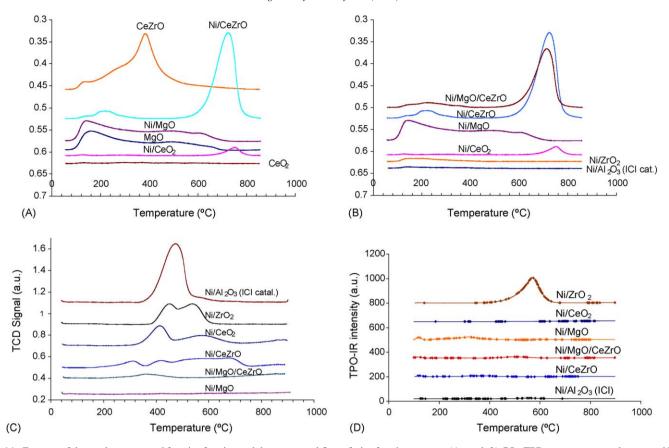


Fig. 14. Features of the catalysts prepared for tri-reforming and the conceptual flow of tri-reforming process. (A, top left) CO₂-TPD over supports and supported Ni catalysts; (B, top right) CO₂-TPD over supported Ni catalysts; (C, bottom left) TPR over Ni catalysts supported on different supports; (D, bottom right) Carbon deposits analysis on the used catalysts by TPO-IR after tri-reforming reaction.

6.2. Using "Molecular Basket" adsorbent for CO_2 separation

 CO_2 separation is often viewed as the first step for chemical utilization. Many reports have been published on CO_2 separation [139,143,152,158,159,162,164,165,166,167,169,170].

As an attempt to explore new CO_2 adsorbent, novel CO_2 "molecular basket" adsorbents have been proposed and prepared in our laboratory by synthesizing and modifying the mesoporous molecular sieve of MCM-41 type with polyethylenimine (PEI) [75]. The MCM-41-PEI adsorbents were characterized by X-ray powder diffraction (XRD), N_2

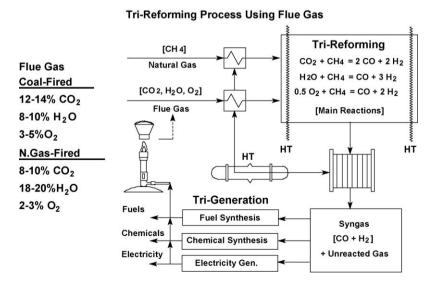
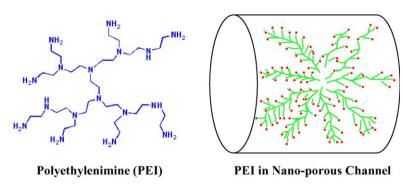



Fig. 15. Process concept for tri-reforming of natural gas using flue gas from coal-fired or natural gas-fired electric power plants and effluent gases from other industrial processes. HT represents heat transfer or heat exchange including reactor heat up and waste heat utilization.

- . Large pore volume nanoporous support can store large amount of \mathbf{CO}_2
- Branched CO₂-affinity polymers provide adsorption sites
- · Branched amine facilitate the desorption
- Synergic effect on the CO₂ adsorption capacity and adsorption kinetic between nanoporous support and polyethylenimine

Fig. 16. CO₂ 'molecular basket' concept for highly-selective high-capacity adsorbent (Based on [75,76]).

adsorption/desorption, thermal gravimetric analysis (TGA) as well as the CO₂ adsorption/desorption performance.

Fig. 16 shows the CO_2 'molecular basket' concept for highly-selective high-capacity adsorbent; Fig. 17 illustrates the formulation of MCM41-PEI as CO_2 'molecular basket' adsorbent; and Fig. 18 shows the properties and performance of MCM41-PEI for CO_2 [73–76].

The experimental work included the effects of preparation conditions (PEI loadings, preparation methods, PEI loading procedures, types of solvents, solvent/MCM-41 ratios, addition of additive, and Si/Al ratios of MCM-41) on the CO₂ adsorption/desorption performance of MCM-41-PEI. With the increase in PEI loading, the surface area, pore size and pore volume of the PEI-loaded MCM-41 adsorbent decreased. When the PEI loading was higher than 30 wt.%, the mesoporous pores began to be filled with PEI and the mesoporous molecular sieve MCM-41 showed a synergetic effect on the adsorption of CO₂ by PEI. At PEI loading of 50 wt.% in MCM-41-PEI, the highest CO₂ adsorption capacity of 246 mg/g-PEI was obtained, which is 30 times higher than

that of the MCM-41 and is about 2.3 times that of the pure PEI. Impregnation was found to be a better method for the preparation of MCM-41-PEI adsorbents than mechanical mixing method. The adsorbent prepared by a one-step impregnation method had a higher CO₂ adsorption capacity than that of prepared by a two-step impregnation method. The higher the Si/Al ratio of MCM-41 or the solvent/MCM-41 ratio, the higher the CO₂ adsorption capacity. Using polyethylene glycol as additive into the MCM-41-PEI adsorbent increased not only the CO₂ adsorption capacity, but also the rates of CO₂ adsorption/desorption. A simple model was proposed to account for the synergetic effect of MCM-41 on the adsorption of CO₂ by PEI.

More recently, it has been experimentally shown that the "molecular basket" adsorbent can selectively capture CO_2 for the separation of CO_2 from simulated flue gas [77,78]. Based on the laboratory studies, pilot plant tests of the MCM41-PEI adsorbent were conducted at a demonstration boiler facility under the support of US Department of Energy. The CO_2 "molecular basket" adsorbent was successfully applied to the

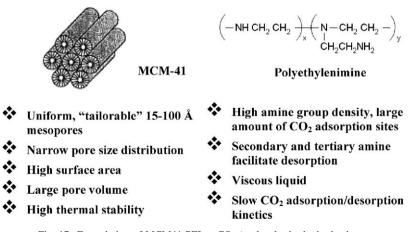


Fig. 17. Formulation of MCM41-PEI as CO₂ 'molecular basket' adsorbent.

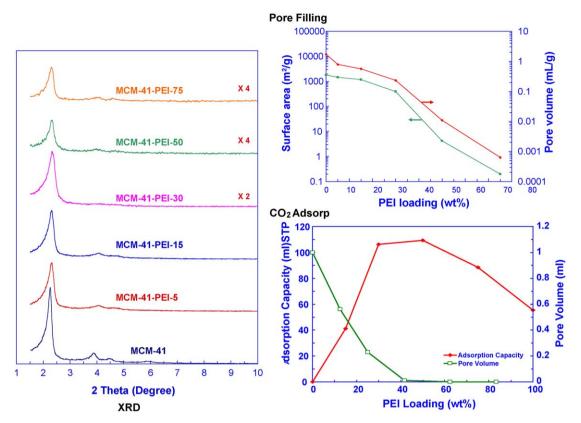


Fig. 18. Properties and performance of MCM41-PEI for CO₂. Left: XRD of MCM41-PEI with different PEI loading; Top right: pore volume and surface area of MCM41-PEI at liquid nitrogen temperature as a function of PEI loading; Bottom right: CO₂ adsorption at 75 °C versus PEI loading [75,76].

separation of CO_2 from natural gas-fired and coal-fired boiler flue gas [75,76]. Some recent studies have shown that lithium-containing oxides such as lithium zirconate and lithium silicate can be effective CO_2 absorbents [79,80].

6.3. Using CO_2 to replace phosgene: dimethyl carbonate synthesis

Traditional route of dimethylcarbonate (DMC) synthesis uses phosgene. The use of CO₂ in synthesis of DMC presents an environmentally friendly and also attractive approach, since CO₂ can replace phosgene and chlorine (toxic chemicals), which has been discussed by Aresta and Quaranta for DMC and other chemical processes [13]. Shown below is a comparison of different chemical processes for making dimethyl carbonate

(DMC), an industrially useful chemical. US phosgene use was estimated to be about 1.2 million tonnes per year [13].

In terms of environmental benefits, the new CO₂-based route is superior to the existing industrial processes that are based on either phosgene (Fig. 19) or CO, as both chemicals are toxic. Some recent studies by Aresta and co-workers have shown that direct oxidative carboxylation can be achieved using an olefin and CO₂ under an oxidative condition [81], which can produce the cyclic carbonate chemicals that are currently synthesized in industry by using phosgene.

Conventional route (SNPE, 1970s):

$$CO + Cl_2 = COCl_2 (Phosgene)$$
 (8)

$$COCl2 + 2CH3OH = CH3OCOOCH3 + 2HCl (9)$$

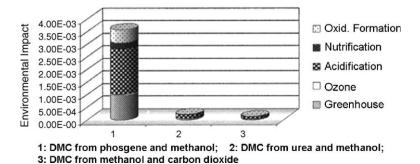


Fig. 19. Environmental benefits of dimethyl carbonate synthesis using CO₂ and methanol [12].

New Ube chemical process – 3000 tons/Yr

$$CO + 2RONO = ROC(O)OR + 2NO$$
 (10)

New DMC process by EniChem - 12000 tons/Yr

$$CO + 1/2 O_2 + 2 CH_3 OH = CH_3 OCOOCH_3 + H_2 O$$
 (11)

New CO₂-based route

$$CO_2 + 2CH_3OH = CH_3OCOOCH_3 + H_2O$$
 (12)

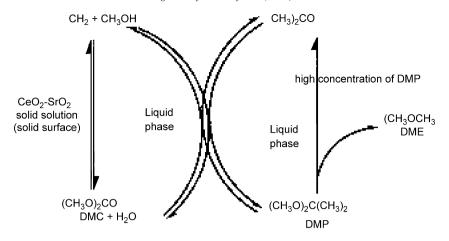
DMC can be synthesized using CO₂ and methanol over heterogeneous catalysts. For example, selective formation of DMC has been observed over some solid oxide catalysts such as ZrO₂ [82,83]. The dissociative adsorption of methanol occurs more slowly than the adsorption of CO₂ on ZrO₂, but the species formed from methanol are bound more strongly. The bulk of this zirconia (prepared by the calcination of zirconium hydroxide at 673 K) had a mainly tetragonal structure, which was determined by XRD. In contrast, near its surface the monoclinic phase was major and the tetragonal phase was minor, as determined by laser Raman spectroscopy. The initial work suggests that the catalytic activity of ZrO₂ is related to acid-base pair sites of ZrO₂ surface based on temperature-programmed desorption of CO₂ and NH₃ [82,83].

Based on a detailed in-situ IR spectroscopic study, Jung and Bell [84] proposed the following mechanism for the DMC synthesis from CO₂ and methanol over monoclinic zirconia, as shown in Fig. 20. Methanol binds to Zr⁴⁺ Lewis acid sites and releases an H atom, which then rapidly reacts with a surface OH group to form H₂O. CO₂ is then inserted into the Zr–O bond of the CH₃O–Zr species to produce m-CH₃OCOO–Zr. This process is facilitated by interactions of C and O atoms in CO₂ with Lewis acid–base pairs of sites. Methyl carbonate species can also be produced via the reaction of CH₃OH with CO₂ adsorbed in the form of bicarbonate species, but this process is

slower than that involving the reaction of CO₂ with methoxide species. DMC is formed by transfer of a methyl group to the terminal O atom of methyl carbonate species [84].

Tomishige et al. [85] found that CeO_2 – ZrO_2 solid solution catalysts are very effective and show much higher activity than ZrO_2 catalyst for the selective synthesis of DMC from methanol and CO_2 , but the activity depends strongly on the calcination temperature and composition of CeO_2 – ZrO_2 (preferred ratio of Ce/(Ce + Zr) = 0.2, 0.33). BET surface area of CeO_2 – ZrO_2 can be twice that of ZrO_2 . The higher the calcination temperature, the higher the activity of the catalyst for DMC formation, though the BET surface area is lower on the catalyst calcined at higher temperature [86].

The combination of an excellent CeO₂–ZrO₂ [Ce/ (Ce + Zr) = 0.2 catalyst with the H₂O removal system can give a novel and more efficient process of selective DMC production starting from CO₂ and methanol, as illustrated in Fig. 21 according to Tomishige and Kunimori [86] who reported this method for DMC synthesis. CeO2-ZrO2 (Ce/ (Ce + Zr) = 0.2) solid solution catalyst has a good selectivity towards DMC in the synthesis from methanol and CO₂. However, the methanol conversion is very low because the DMC formation is limited by the reaction equilibrium. The reaction between 2,2-dimethoxy propane (DMP) and H₂O can be utilized for removing the H₂O product to shift the reaction equilibrium. The addition of the DMP to the reaction system of DMC synthesis from methanol and CO₂ is very effective for the increase of the conversion. However, the addition of larger amounts of DMP is not suitable because of the decrease of DMC formation rate and the by-product dimethyl ether (DME) formation. Dimethyl carbonate can also be synthesized using homogeneous catalysis [87].


Use of CO₂ to synthesize DMC also has further beneficial environmental impact beyond CO₂ utilization. DMC itself is a

H

CH₃OH

$$Zr$$
 Zr
 Zr

Fig. 20. Proposed mechanism for the formation of dimethylcarbonate from CO₂ and CH₃OH over monoclinic zirconia [66].

low concentration of DMP

Fig. 21. Model scheme of dimethyl carbonate formation from methanol, CO₂ and dimethoxy propane over CeO₂-ZrO₂ catalyst [86].

unique molecule and can be used for a range of new environmentally friendly reactions to replace some of the environmentally harmful processes. For example, the transesterification of DMC with phenol gives methyl phenyl carbonate, which is converted into diphenyl carbonate (DPC) by disproportionation. MoO₃/SiO₂ is an active catalyst for both reactions [88]. DPC is an essential monomer in the nonphosgene route for polycarbonates. The methoxycarbonylation of aniline gives methyl N-phenyl carbamate in the presence of a lead compound. This reaction offers a non-phosgene route to isocyanates. As a methylating agent, DMC can be a substitute for methyl halides and dimethyl sulfate, toxic and corrosive chemicals [88]. Phenylacenitrile, aniline and phenol are selectively methylated with DMC over zeolites in the vaporphase. The reaction of DMC with silica offers a simple and clean method for synthesizing Si(OCH₃)₄ [88].

6.4. Use of CO₂ for supercritical fluid extraction

While CO_2 is a greenhouse gas, it is much more environmentally benign than many of the existing solvents used in industries. Environment-friendly and energy-efficient processes can be designed by using CO_2 for separation and chemical reaction and materials synthesis based on the unique physical or chemical properties of CO_2 . For example, supercritical CO_2 can be used as either a solvent for separation or as a medium for chemical reaction, or as both a solvent and a reactant.

The use of supercritical CO₂ (SC–CO₂) allows contaminant-free supercritical extraction of various substances ranging from beverage materials (such as caffeine from coffee bean), foods (such as excess oil from fried potato chips), and organic and inorganic functional materials, to herbs and pharmaceuticals. It is also possible to use SC–CO₂ to remove pollutants such as PAHs from waste sludge and contaminated soils [89] and toxics on activated carbon adsorbent [90].

Supercritical CO₂ extraction of essential oils and waxes has been studied and reviewed [91,92]. Chen and Lin published a review on the use of supercritical fluid extraction (SFE) in the preparation and analysis of Chinese herbal medicine (CHM),

where the use of SC-CO₂ to replace traditional organic solvent is justified and found to be promising [93]. Consideration is given to the coupling of sub-critical H₂O and SC-CO₂ to extract more compounds and to use the dual role of extracting useful ingredients and removing pesticide residues.

Reactive extraction of organic acids has been studied using supercritical CO₂ for separation of citric acid and acetic acid from their aqueous solution [94]. This is difficult, since organic acids are polar compounds, which can hardly be extracted by SC-CO₂. A strategy is to use reactants, which increase the solubility of the acid by a chemical reaction. Alamine 336 and Hostarex A 327 were used as reactants and oleyl alcohol was selected as an active diluent, i.e., a solvent containing functional groups that interact strongly with the acid-amine complex. The acid-amine complexes were extracted more than the amines and the acids alone under the given conditions. More recently, SC-CO₂ has become useful even for inorganic materials synthesis and processing. As an example, Wu et al. reported on the influence of the supercritical debinding on the properties of injection molding ZrO₂ ceramics. Their results indicate that with SC-CO₂ fluid debinding, the defects that occur in thermal debinding can be avoided and mechanical properties can be improved [95]. There are numerous reports in the recent literature on SC-CO₂ extraction for various applications.

6.5. Using supercritical CO_2 as a solvent, medium or reactant

 $SC-CO_2$ can be used as a solvent or reaction medium or coreactant for a number of organic reactions. There is a paradigm shift away from using traditional solvents in organic synthesis towards CO_2 -mediated reactions that can lead to more environmentally friendly or greener synthetic procedures or improved outcomes (elimination of complicated product work up, higher selectivity, etc.).

Jessop et al. reported the first successful cases that demonstrate the efficient production of formic acid in a supercritical mixture of CO_2 and hydrogen containing a catalytic ruthenium(II) phosphine complex [96]. The use of a supercritical

phase, in which hydrogen is highly miscible, leads to a very high initial rate of reaction-up to 1400 mol of formic acid per mote of catalyst per hour. The same reaction under identical conditions but in liquid organic solvents is much slower. Their results demonstrated that supercritical fluids represent a promising medium for homogeneous catalysis. Various reactions and systems have been studied. Jessop and coworkers have published reviews focusing on homogeneous hydrogenation and homogeneous catalysis in SC–CO₂ [31–33].

Koch and Leitner [95] reported on rhodium-catalyzed hydroformylation of olefinic substrates in SC–CO₂. Leitner [97] have discussed various metal-catalyzed reactions in SC-CO₂ in applications of compressed and particularly supercritical CO₂ in organic synthesis. Polymer synthesis and processing using SC–CO₂ has also become important and various polymerizations have been studied in SC–CO₂ [35,98]. A recent review has focused on the role of SC-CO₂ in various synthetic organic reactions such as hydrogenation, Friedel–Crafts alkylation, transition metal catalysis, palladium-mediated couplings, radical reactions, biotransformations, and polymerizations [99].

Subramaniam and Busch have studied catalytic oxidations and published a review on oxidations in CO₂-based reaction media, including novel CO₂-expanded phases [100,101]. They have discussed homogeneous catalytic oxidations in dense SC-CO₂ most of which involve transition metal catalysts and dioxygen or organic peroxides as oxidant. They present a new process in which the conventional solvent medium is only partially replaced by dense CO2 that is called a CO2-expanded solvent medium. Examples are presented that show enhanced oxidation rates compared to either neat organic solvent or SC-CO₂ for organic substrates (alkenes and phenols) in CO₂expanded media using dioxygen and metal complexes of both Schiff base and porphyrin ligands. The authors conclude that CO₂-expanded media offers several advantages as follows: solvent replacement with dense CO₂ by up to 80 mol%, representing a substantial reduction in solvent usage; maintenance of the solubilities of the catalyst and substrate in the reaction mixture while enhancing the miscibility of dioxygen therein; lower process pressures on the order of tens of bars; and pressure-tunable dielectric constants making it possible to realize an optimum reaction medium between SC-CO₂ and neat solvent limits.

Recently, Jessop and co-workers reported on switchable solvent systems for catalysis and catalyst recovery using CO_2 as a solubility switch [102]. They invented a method for fluorous biphasic catalysis, in which the fluorous liquid is replaced by fluorinated silica, the fluorous catalyst is induced to dissolve in the organic solvent by the presence of CO_2 , and the recovery of the catalyst after the reaction is achieved by release of the CO_2 pressure.

6.6. Using CO2 as a mild oxidant

The dissociation of CO_2 on catalyst surface could produce active oxygen species. Some heterogeneous chemical reactions can benefit from using CO_2 as a mild oxidant, or as a selective

source of "oxygen" atoms. For example, the use of CO₂ has been found to be beneficial for selective dehydrogenation of ethylbenzene to form styrene, and for dehydrogenation of lower alkanes such as ethane, propane and butane to form ethylene, propylene, and butene, respectively.

Sugino et al. [103] have made an attempt to use CO_2 as a diluent and oxidant in the dehydrogenation of ethlybenzene to styrene carried out over an activated carbon-supported iron catalyst. An addition of 20–30 mol% lithium nitrate to iron resulted in a significant increase in the catalytic activity. In addition to styrene, carbon monoxide and water were formed as products. This indicated that the reaction proceeds via an oxidative dehydrogenation mechanism. Yoo has found that adding CO_2 to the oxidation reaction of alkylaromatics with O_2 enhanced the rate of reaction and improved the selectivity towards the aldehyde and oxygenate products [174]. Some recent studies on heterogeneous catalytic conversion using CO_2 as an oxidant have been discussed in several recent reviews [11,25,161].

6.7. Using solar energy for CO₂ conversion

Using the renewable sources of energy, the reduction of CO_2 to form methanol or even CH_4 could become options when the fossil resources become scarce or more expensive. The dissociation of C–O bond in CO_2 is required so a catalytic approach is likely to be involved.

Anpo and Chiba studied the photocatalytic reduction of CO₂ with H₂O and its reaction mechanism on highly dispersed titanium oxide anchored onto Vycor glass, which was prepared through a facile reaction between surface OH groups of Vycor and TiCl₄ [104]. They used UV irradiation of the anchored catalyst at 275 K in the presence of CO₂ and H₂O and observed the photocatalytic formation of CH₄, CH₃OH and CO as major products. Sayama and Arakawa [168] reported on photocatalytic decomposition of water and photocatalytic reduction of CO₂ to CO over ZrO₂ catalyst without any loaded metals under UV irradiation. The rate of H₂ and O₂ evolution increased upon addition of Na₂CO₃ and NaHCO₃. Moreover, the evolution of CO (the photocatalytic reduction product of CO₂) was observed from NaHCO₃ solutions. The work by Anpo and coworkers revealed that titanium oxide species anchored within the Y-zeolite cavities by an ion-exchange method exhibit a high and unique photocatalytic reactivity for the reduction of CO₂ with H₂O at 328 K with a high selectivity for the formation of CH₃OH in the gas phase [105]. It is interesting to note a more recent report that the photocatalytic reduction on TiO₂ powders produced CH₄ as the main product, whereas methanol and CH₄ were main products from the reaction on highly dispersed titanium oxide species anchored on porous glass and zeolites [106].

Frei and coworkers have used TiMCM-41 silicate sieve as a catalyst and in situ FT-IR spectroscopy to monitor the 266-nm light-induced reaction of CO₂ and H₂O gas mixtures (including isotopic modifications (CO₂)-C-13, (CO₂)-O-18, and D₂O) at room temperature [107]. Carbon monoxide gas was observed as the sole product by infrared, and the growth depended linearly

on the photolysis laser power. H_2O was confirmed as the stoichiometric electron donor. Their work identifies CO as the single-photon, 2-electron-transfer product of CO_2 at framework Ti centers with H_2O acting as an electron donor, which has not been established before [108].

6.8. Use of CO_2 as a recycled carbon source in fuels and chemicals

If renewable sources or waste sources of energy are used, recycling of CO₂ as carbon source for chemicals and fuels should be considered for applications where CO₂ can be used that have desired environmental benefits. CO₂ recycling would also make sense if such an option can indeed lead to less consumption of carbon-based fossil resources without producing more CO₂ from the whole system.

The amount of liquid fuel consumed in the US in 1999 was 13.60 million barrel per day, which corresponds to a very large amount of carbon estimated to be on the same order of magnitude with the CO_2 emitted from fossil fuel-based electric power plants. The amounts have increased significantly in 2005 but the same trend holds for 2005. The proposed approaches include hydrogenation of CO_2 with H_2 to methanol [109–111], and Fischer–Tropsch synthesis using CO_2 -rich synthesis gas.

Hydrogenation of CO_2 for methanol synthesis has been the subject of a large number of studies over various catalysts [112–119], and many reports continue to appear in the current literature [120–122].

Conversion of CO_2 to C_1 to C_{10} hydrocarbon fuels via methanol has also been reported by Inui et al. [123], and by Lee and co-workers [124]. There has been some reported effort on direct synthesis of aromatics from hydrogenation of CO_2 using hybrid catalysts composed of iron catalysts and HZSM-5 zeolite [125]. Related to the methanol synthesis and Fischer–Tropsch synthesis is the recently proposed tri-reforming process for conversion of CO_2 in flue gas or in CO_2 -rich natural gas without CO_2 pre-separation to produce synthesis gas $(CO + H_2)$ with desired H_2/CO ratios of 1.5-2.0 [62,63,65].

For the CO₂ conversion to methanol using H₂, it should be noted that H₂ is currently produced by reforming of hydrocarbons which is an energy-intensive process and accompanied by CO₂ formation both from the conversion process and from the combustion of the fuels which is used to provide the process heat [40]. Therefore, methanol synthesis using CO₂ does not contribute to CO₂ reduction unless H₂ is produced by using renewable energy or process waste energy or nuclear energy

6.9. Value-Added CO₂ sequestration

Although storage of CO₂ as mineral carbonate seems preferred for the permanent sequestration, value-added CO₂ sequestration approaches include CO₂ storage into geologic formations that also enhances the recovery and production of petroleum, or natural gas, or coal-bed CH₄. In principle, CO₂ in flue gas from power plants may be used for enhanced recovery of oil and natural gas, and for enhanced coal bed methane

recovery. For enhanced oil recovery, the requirement for CO₂ purity is a minimum, and thus the cost of gas processing (prior to use) is minimal.

The US Department of Energy/National Energy Technology Laboratory is supporting research on various CO₂ sequestration options [126-130,141-143,157]. The large-scale geologic sequestration projects supported by US DOE include CO₂ sequestration into depleting oil reservoir for enhanced oil recovery in Weyburn, Canada [127]; CO₂ sequestration into depleting oil well in West Pearl Queen, New Mexico; sequestration of CO₂-rich landfill gas into coal seems in Johnson County, Kansas, where approximately 5 million cfd (cubic feet per day) of landfill gas is treated which results in about 3 million cfd of pipeline quality natural gas [128]; CO₂ sequestration into coal seam in Marshal County, West Virginia and CO₂ sequestration into coal seam in San Juan Basin, New Mexico, which also enhances coalbed methane recovery from unminable coal seams in both locations [126]. Another approach in this direction is the so-called ocean fertilization, which make use of CO₂ in specific locations in the ocean and sun light to grow biomass [129].

6.10. Using biochemical and geochemical environments for CO₂ conversion

Using biochemical or geochemical environments to convert CO_2 is an alternative to photochemical CO_2 conversion (carbohydrate synthesis) under sunlight. Existing fossil fuels are believed to have originated from bio-chemical and geochemical transformations of organic substances that were initially present on the surface of the earth over the course of millions of years, which may be viewed as a detour in the carbon cycle. For example, numerous studies have shown that coal was formed from bio-chemical degradation and geochemical maturation of higher plant materials that were formed initially on the surface of the earth via photosynthesis from CO_2 and H_2O .

New ways of thinking have led to proposals for converting CO_2 directly in geologic formations during its long-term storage or biochemical conversion to useful C-1 chemical substances. These are still new topics for which only a few reports are available [131,132,138]. The biomimetic CO_2 conversion for sequestration has also been reported using the enzyme carbonic anhydrase, and good enzyme activity was observed in the presence of low levels of SO_x and NO_x (that might be expected from flue gases) and also in solution representative of seawater [133].

6.11. Evaluating the potential of growth in CO_2 utilization markets

This author did an analysis of potential of market growth for CO₂ conversion and utilization by calculating the hypothetical CO₂ demand for making all the carbon-based organic chemicals and materials [47]. Table 9 shows the US annual production of CO₂, CO₂-based and CO₂-related chemicals, as well as synthetic organic chemicals and materials based on the

Table 9
US Production of Synthetic Plastics and Related Chemicals and Estimated Potential Upper Limit of CO₂ Demand for Chemicals and Materials

Chemicals and materials	Production in common units ^a	Metric tons (tonnes)
Synthetic plastics	80727 millions of lb	36,650,058
Synthetic fibers	10219 millions lb	4,639,426
Synthetic rubbers	2414 thousands of metric tons	2,414,000
	1. Polymers subtotal (1999) =	37,584,996 as C, 43,703,484 as Comp
Ammonia (reference for urea)	14972 thousands of tons	13,579,604
Urea for fertilizer (1999) ^{a,b}	5453 thousands of tons	4,945,871
Urea for chemicals (1999) ^{a,b}	18,660 millions of lb ^b	8,471,640
Urea for chemicals (1994) ^c	15.90 billions of lb (7,952 thousands of tons)	7,218,600
	2. Urea-equivalent CO ₂ (1999)=	2,686,185 as C, 9,839,508 as CO_2
Methanol for chemicals (1994) ^c	12.18 billions of lb	5,529,720
	3. MeOH-Equivalent CO ₂ (1999) ^d	$2,428,590$ as C, $8,895,937$ as CO_2
CO ₂ – Liquid + Solid (1994) ^{c,e}	11.80 billions of lb (5,899 thousands of tons)	5,357,200
	4. Liquid + Solid CO ₂ (1999) ^f	1,711,143 as C, 6,267,924 as CO ₂
Ultimate US $\rm CO_2$ demand for chemicals and materials Ultimate world $\rm CO_2$ demand for chemicals and materials	Total US Potential $(1 + 2 + 3 + 4) =$ Estimated for World Potential	44.4 MMT as C, 162.8 MMT as $\rm CO_2$ 177.6 MMT as C, 651.3 MMT as $\rm CO_2$

^a Source: ACS. Facts & Figures for the Chemical Industry. C&EN, June 26, 2000, 48-89.

data published [134,135]. The methodology of estimation used here is similar to that used by Halmann and Steinberg [5], except for the modification by considering carbon equivalence in this work. Steinberg used the production data for the plastics in the US in 1980. The present estimation for the carbon-based synthetic materials is based on the US production of plastics, fibers, and rubbers in the 1999 [135].

The US production of liquid and solid CO_2 amounts to 5.36 million tonnes per year (Table 9), which is mainly consumed in the food and beverage industries (refrigerant, coolant, and carbonated drinks). In addition, there are about 10 million tones of CO_2 consumed in making 4.95 million tons of urea fertilizers and 8.47 million tones of urea for chemicals synthesis.

Table 9 also shows the potential upper limit of CO₂ demand estimated by this author for chemicals and materials. If we assume that the potential chemical market demand is that for making all the carbon-based synthetic materials plus several CO₂-related major chemicals and materials using CO₂, then the upper limit of potential CO₂ demand for synthetic organic chemicals and polymer materials could increase to 44.41 million metric tons of carbon equivalent (Table 9). This calculated number corresponds to a stoichiometric reaction system where all the carbon in CO₂ is converted to the chemicals (urea, methanol, etc.) and synthetic polymer materials (plastics, fibers, rubbers). This is, of course, a hypothetical scenario since there are thermodynamic and kinetic issues with chemical reactions involving CO₂, but it does provide an useful measure in terms of order of magnitude.

By this estimation, the upper limit of potential market demand worldwide for CO_2 in making organic chemicals and materials is estimated to be 178 million metric tons of carbon equivalent. The detailed statistical data of chemicals production are not available for all the countries in the world, but the author did a simplified estimation based on the US chemical production. US chemical industry is the largest in the world, and the plants in the US provide 24% of the world's total chemical production [136]. Consequently, the upper limit of potential market demand for CO_2 in the world is estimated by the author to be four times that for the US For some chemicals such as urea, this estimate is lower than the real value. The 2002 world production of urea is 110 million metric tons, which is equivalent to 80.7 million metric tons of CO_2 and 22 million metric tons of carbon.

Table 10 shows the US production of liquid fuels in 1999 [137]. The amount of liquid fuels consumed in the US reached 13.60 million barrels per day, in which 12.75 million barrels per day liquid fuels were used for transportation fuels in 1999. By simple calculation of carbon equivalence, it becomes apparent that the liquid fuels correspond to a very large amount of carbon that is on the same order of magnitude with the $\rm CO_2$ emitted from fossil fuel-based electric power plants in the US, as can be seen from Table 10. The total production of liquid fuels in the world is estimated to be about four times of the US annual production, based on the fact that US petroleum consumption is about 25% of the world total consumption [137]. Detailed statistical data of chemicals production and fuels consumption are not yet available for 2005 but the same overall trends hold for 2005.

^b A significant fraction of the urea is used for making thermosetting plastics that are included in synthetic plastics (2,691 millions of lb urea-based thermosetting resins were produced in 1999).

^c Source: ACS. Facts & Figures for the Chemical Industry. C&EN, June 24, 1996, 38–79.

^d 1999 production of methanol was estimated (as 1.17 times 1994 production).

e Liquid and solid CO2 only.

f 1999 production of liquid + solid CO₂ was estimated (as 1.17 times 1994 production).

Table 10
Us production of liquid fuels and their carbon equivalence

US fuels	1999 Daily production ^a	1999 Annual production	Total annual production ^b	C-equivalent of annual prod ^c
	Million barrels per day	Million barrels per year	Million metric Tons (tonnes)	Million metric tons (tonnes)
Gasoline	8.38	3058.7	354.8	301.6
Distillate Fuels (Diesel, etc)	3.55	1295.8	171.0	145.4
Jet Fuel	1.67	609.6	77.4	65.8
	Total = 13.60 (12.75 in transportation)		US total =	512.8
			World liquid fuel ^d = 1997 US Electric Utilities Annual CO ₂ Emissions	2051.2 523.4 as C

^a Source: Annual Energy Review 1999, EIA, US DOE, 2000.

Table 11 Order of Magnitude Estimates for the Worldwide Capacity of CO₂ Utilization

Option of CO ₂ utilization	Worldwide capacity (order of magnitude in giga ton carbon)	
Non-chemical utilization	0.01–0.1 GtC per year	
Chemicals and materials	0.1–1 GtC per year	
Synthetic liquid fuels	1–10 GtC per year	

^aEstimated based on the US and the world production of chemicals and materials as well as liquid fuels in 1999.

Table 11 shows the order of magnitude estimates by the author for CO₂ utilization, based on the data shown in Tables 9 and 10. For comparison, Table 12 shows the order of magnitude estimates published in a recent reviews by Herzog for the worldwide capacity of various options for CO₂ sequestration [153–156]. The worldwide capacity for utilization of CO₂ for making chemicals and materials is less than 1 Giga tons of carbon per year, which is relatively small compared to several other options such as ocean sequestration.

However, it should be noted that the amount of CO₂ that can be utilized for making chemicals and materials can be

Table 12 Order of magnitude estimates for the worldwide capacity of various sinks^a

Sequestration option	Worldwide capacity (order of magnitude in giga ton carbon)
Ocean	1000s GtC
Deep saline formations	100s-1000s GtC
Depleted oil and gas reservoirs	100s GtC
Coal seams	10s-100s GtC
Terrestrial	10s GtC
Utilization (chemical conversion)	<1 GtC per year

^a Source. H. J. Herzog. Using Carbon Capture and Sequestration Technologies to Address Climate Change Concerns. Am. Chem. Soc. Div. Fuel Chem. Prepr., 2001, 46(1), 53–55.

potentially large enough for expanding commercial-scale applications worldwide. For example, the consumption of merchant liquid CO₂ in the US, Western Europe and Japan amounted 10.6 million metric tons in 2002 [140]. Global merchant CO₂ demand as an industrial gas will increase at an average annual growth rate of 2.4% from \$3.2 billion in 2003 to \$3.6 billion in 2008 [53]. The global urea market, which uses CO₂ and ammonia for the synthesis, is estimated to be \$16.5 billion USD for over 110 million metric tons of urea [60]. These and other application areas can be large enough for considering further significant growth by developing new applications and expanding existing applications using CO₂.

7. Summary and conclusions

The mitigation of emissions of greenhouse gases, particularly CO₂, and their effective utilization present to the world both a difficult challenge and a major opportunity for sustainable development in energy and environment.

Global strategy for control of CO₂ should begin with energy issues since the problem originates from the way the energy sources are selected and used.

The amounts of carbon in CO_2 emitted as greenhouse gas from combustion of fossil fuels worldwide have become higher than the amounts of petroleum and petroleum products consumed as chemical feedstock in the world, namely the amount of carbon used for making most chemicals, organic materials and liquid transportation fuels.

CO₂ conversion and utilization research is important and should be an integral part of research and development for carbon management and sustainable development.

When applicable, using CO_2 in concentrated sources without CO_2 separation is desired (e.g., tri-reforming versus CO_2 reforming).

For applications where pure CO₂ is needed, more efficient CO₂ separation method is desired (e.g., CO₂ 'molecular basket' versus conventional zeolite or carbon adsorbents).

^b 1 barrel of oil (US) = 42 US gallons = 0.15899 cubic meters (m³) = 158.99 liters. Assume average density values of the fuels at ambient temperatures as follows: 0.73 g/mL for gasoline; 0.80 g/mL for jet fuel; 0.83 g/mL for distillate fuels (diesel fuel and heating oils).

^c Assume the average carbon content in the liquid fuels is 85 wt.%.

^d Estimated based on the fact that US petroleum consumption is about 25% of the world's total consumption.

 ${
m CO_2}$ can be used effectively in chemical processing to reduce environmental impact, although the amount of ${
m CO_2}$ used is small compared to that from fossil fuel combustion.

More work is needed for more effective uses of CO_2 to replace toxic chemicals such as phosgene (e.g., CO_2 versus phosgene for DMC synthesis).

Value-added strategies and novel approaches are needed for more effective and energy-efficient CO₂ conversion and utilization.

Various strategic considerations, technical approaches, and specific research directions have been presented. Selected case studies have been discussed. More research is necessary towards effective CO_2 conversion into useful substances using renewable sources of energy.

CO₂ issue is truly global and thus people and governments worldwide should seriously consider supporting research and industrial commitments on CO₂ conversion and utilization, as well as international collaborative research involving developing countries.

Acknowledgments

The author gratefully acknowledges the financial supports on various portions of research by the US Department of Energy, National Energy Technology Laboratory, and Air Products and Chemicals Inc. The author wishes to thank his coworkers in CO₂-related area including Dr. Wei Pan, Dr. Xiaochun Xu, Dr. Srinivas Srimat, Dr. Jian Zheng, Dr. John Andresen, Mr. Bruce Miller, Dr. Jonathan Mathews and Prof. Alan W. Scaroni of PSU, and his professional colleagues for helpful discussions including Prof. Michelle Aresta of University of Bari, Dr. John Armor of Air Products, Prof. Tomoyuki Inui of Kyoto University, Prof. Julian Ross of Univ Limerick, Mr. Howard Herzog of MIT, Dr. Vasant Choudhary of National Chemical Laboratory in India, Prof. Qiming Zhu of Tsinghua University, and Prof. Chang-Jun Liu of Tianjin University. The author is pleased to acknowledge the Fulbright Distinguished Scholar award from the US Department of State administered by the US-UK Fulbright Commission and the US Council for International Exchange of Scholars, for a sabbatical study at the Department of Chemical Engineering, Imperial College London, University of London, UK, during 2004-2005.

References

- S.A. Levin, The problem of pattern and scale in ecology, Ecology 73 (6) (1992) 1943–1967.
- [2] J.M. Melillo, A.D. Mcguire, D.W. Kicklighter, B. Moore, C.J. Vorosmarty, A.L. Schloss, Global climate-change and terrestrial net primary production, Nature 363 (6426) (1993) 234–240.
- [3] D.S. Schimel, Terrestrial ecosystems and the carbon-cycle, Global Change Biol. 1 (1) (1995) 77–91.
- [4] J. Paul, C.-M. Pradier (Eds.), Carbon Dioxide Chemistry: Environmental Issues, Royal Society of Chemistry, Cambridge, UK, 1994, p. 405.
- [5] M.M. Halmann, M. Steinberg, Greenhouse Gas Carbon Dioxide Mitigation: Science and Technology, Lewis Publishers, Boca Raton, FL, 1999, p. 568.
- [6] M.M. Maroto-Valer, C.S. Song, Y. Soong, Environmental Challenges and Greenhouse Gas Control for Fossil Fuel Utilization in the 21st Century, Kluwer Academic/Plenum Publishers, New York, 2002, p. 447.

- [7] DOE/NETL, Carbon Sequestration. Technology Roadmap and Program Plan 2005. US Department of Energy, National Energy Technology Laboratory, May 2005.
- [8] C.D. Keeling, T.P. Whorf, Atmospheric CO₂ records from sites in the SiO air sampling network, in: Trends: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, TN, USA, 2005.
- [9] J.S. Lindsey, Carbon Dioxide. McGraw-Hill Encyclopedia of Chemistry, second ed., McGraw-Hill, New York, 1993, pp. 157–159.
- [10] R. Pierantozzi, fourth ed., Carbon Dioxide. Kirk-Othmer Encyclopedia of Chemical Technology, vol. 5, John Wiley and Sons, New York, 1993 pp. 35–53.
- [11] C.S. Song, A.M. Gaffney, K. Fujimoto (Eds.) CO₂ Conversion and Utilization. American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, 420 pp.
- [12] C.S. Song, S.T. Srimat, S. Murata, W. Pan, L. Sun, A.W. Scaroni, J.N. Armor, Effects of pressure on CO₂ reforming of CH₄ over Ni/Na-Y and Ni/Al₂O₃ catalysts, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington DC, ACS Symposium Series, vol. 809, 2002, pp. 258–274 (Chapter 17).
- [13] M. Aresta, E. Quaranta, Carbon dioxide: a substitute for phosgene, Chemtech. 27 (3) (1997) 32–40.
- [14] M. Aresta, Perspectives of carbon dioxide utilisation in the synthesis of chemicals. Coupling chemistry with biotechnology, Stud. Surf. Sci. Catal. 114 (1998) 65–76.
- [15] M. Aresta, Key issues in carbon dioxide utilization as a building block for molecular organic compounds in the chemical industry, Am. Chem. Soc. Div. Petrol. Chem. Prepr. 45 (1) (2000) 92–93.
- [16] M. Aresta (Ed.), Carbon Dioxide Recovery and Utilization, Springer, 2003, p. 384.
- [17] M. Aresta, Carbon dioxide utilization. Greening both the energy and chemical industry: an overview, Am. Chem. Soc. Symp Ser. 852 (2003) 2–39.
- [18] M. Aresta, A. Dibenedetto, I. Tommasi, Developing innovative synthetic technologies of industrial relevance based on carbon dioxide as raw material, Energy Fuels 15 (2001) 269–273.
- [19] M. Aresta, A. Dibenedetto, Key issues in carbon dioxide utilisation as a building block for molecular organic compounds in the chemical industry, in: C.S. Song, A.M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 54–70 (Chapter 4).
- [20] M. Aresta, A. Dibenedetto, The contribution of the utilization option to reducing the CO₂ atmospheric loading: research needed to overcome existing barriers for a full exploitation of the potential of the CO₂ use, Catal. Today 98 (4) (2004) 455–462.
- [21] T. Inui, M. Anpo, K. Izui, S. Yanagida, T. Yamaguchi (Eds.), Advances in Chemical Conversions for Mitigating Carbon Dioxide (Studies in Surface Science and Catalysis), vol. 114, Elsevier, Amsterdam, 1998, p. 691.
- [22] T. Inui, Effective conversion of CO₂ to valuable compounds by using multifunctional catalysts, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 130–152 (Chapter 9).
- [23] T. Inui, Reforming of CH₄ by CO₂, O₂ and/or H₂O, Catal. R. Soc. Chem. 16 (2002) 133–154.
- [24] H. Arakawa, Research and development on new synthetic routes for basic chemicals by catalytic hydrogenation of CO₂, Stud. Surf. Sci. Catal. 114 (1998) 19–30.
- [25] S.-E. Park, J.S. Yoo, J.-S. Chang, K.Y. Lee, M.S. Park, Heterogeneous catalytic activation of carbon dioxide as an oxidant, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 115–118.
- [26] J.R. Rostrup-Nielsen, Aspects of CO₂-reforming of methane, Stud. Surf. Sci. Catal. 81 (1994) 25–41.
- [27] J.R. Rostrup-Nielsen, B.J.H. Hansen, L.M. Aparicio, Reforming of hydrocarbons into synthesis gas on supported metal catalysts, Sekiyu Gakkaishi 40 (5) (1997) 366–377.

- [28] S.B. Wang, G.Q.M. Lu, G.J. Millar, Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: state of the art, Energy Fuels 10 (4) (1996) 896–904.
- [29] M.C.J. Bradford, M.A. Vannice, CO₂ reforming of CH₄, Catal. Rev. -Sci. Eng. 41 (1) (1999) 1–42.
- [30] Y.H. Hu, E. Ruckenstein, Catalytic conversion of methane to synthesis gas by partial oxidation and CO₂ reforming, Advances in Catalysis 48 (2004) 297–345.
- [31] P.G. Jessop, T. Ikariya, R. Noyori, Homogeneous catalysis in supercritical fluids, Science 269 (5227) (1995) 1065–1069.
- [32] P.G. Jessop, T. Ikariya, R. Noyori, Homogeneous hydrogenation of carbon-dioxide, Chem. Rev. 95 (2) (1995) 259–272.
- [33] P.G. Jessop, F. Joo, C.C. Tai, Recent advances in the homogeneous hydrogenation of carbon dioxide, Coord. Chem. Rev. 248 (21–24) (2004) 2425–2442.
- [34] W. Leitner, Reactions in supercritical carbon dioxide (scCO₂), Topics Curr. Chem. 206 (1999) 107–132.
- [35] A.I. Cooper, Polymer synthesis and processing using supercritical carbon dioxide, J. Mater. Chem. 10 (2) (2000) 207–234.
- [36] D.L. Tomasko, H.B. Li, D.H. Liu, X.M. Han, M.J. Wingert, L.J. Lee, K.W. Koelling, A review of CO₂ applications in the processing of polymers, Ind. Eng. Chem. Res. 42 (25) (2003) 6431–6456.
- [37] X.D. Xu, J.A. Moulijn, Mitigation of CO₂ by chemical conversion: plausible chemical reactions and promising products, Energy Fuels 10 (2) (1996) 305–325.
- [38] H. Audus, H. Oonk, An assessment procedure for chemical utilisation schemes intended to reduce CO₂ emissions to atmosphere, Energy Conv. Manag. 38 (1997) S409–S414.
- [39] P.W.F. Riemer, W.G. Ormerod, International perspectives and the results of carbon-dioxide capture. disposal and utilization studies, Energy Conv. Manag. 36 (6–9) (1995) 813–818.
- [40] J.N. Armor, Catalytic fixation of CO₂, CO₂ purity, energy, and the environment, Am. Chem. Soc. Div. Petrol. Chem. Prepr. 45 (1) (2000) 141–142.
- [41] H. Arakawa, M. Aresta, J.N. Armor, M.A. Barteau, E.J. Beckman, A.T. Bell, J.E. Bercaw, C. Creutz, E. Dinjus, D.A. Dixon, K. Domen, D.L. DuBois, J. Eckert, E. Fujita, D.H. Gibson, W.A. Goddard, D.W. Goodman, J. Keller, G.J. Kubas, H.H. Kung, J.E. Lyons, L.E. Manzer, T.J. Marks, K. Morokuma, K.M. Nicholas, R. Periana, L. Que, J. Rostrup-Nielson, W.M.H. Sachtler, L.D. Schmidt, A. Sen, G.A. Somorjai, P.C. Stair, B.R. Stults, W. Tumas, Catalysis research of relevance to carbon management: progress, challenges, and opportunities, Chem. Rev. 101 (4) (2001) 953–996.
- [42] C.-J. Liu, R.G Mallinson, M. Aresta (Eds.) Utilization of Greenhouse Gases. American Chemical Society, Washington, DC, ACS Symposium Series, vol. 852, 2003, 412 pp.
- [43] J.J. Spivey, Catalysis in the development of clean energy technologies, Catal. Today 100 (1–2) (2005) 171–180.
- [44] D.M. Etheridge, L.P. Steele, R.L. Langenfelds, R.J. Francey, J.-M. Barnola, V.I. Morgan, Historical CO₂ record from the Law Dome DE08, DE08-2, and DSS ice cores (atmospheric CO₂ concentrations, Antarctic ice cores). in: Trends: A Compendium of Data on Global Change, on line at the Carbon Dioxide Information Analysis Center, http://cdiac.esd.ornl.gov/, June 1998.
- [45] G. Marland, T.A. Boden, R.J. Andres, Global, Regional, and National CO₂ Emissions, in: Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A, 2005
- [46] EIA/AER, Annual Energy Review 2003, Energy Information Administration, U.S. Department of Energy, Report No. DOE/EIA-0384(97), 2004.
- [47] C.S. Song, CO₂ Conversion and utilization: an overview, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington DC, ACS Symposium Series, vol. 809, 2002, pp. 2–30 (Chapter 1).
- [48] C.S. Song, Fuel processing for low-temperature and high-temperature fuel cells, challenges, and opportunities for sustainable development in the 21st Century, Catal. Today 77 (2002) 17–50.

- [49] DOE/EERE. Partnership Plan. Freedom CAR and Fuel Partnership. November 2004. http://www.eere.energy.gov/vehiclesandfuels/pdfs/program/fc_fuel_partnership_plan.pdf, viewed June 30, 2005.
- [50] DOE/FE. FutureGen Tomorrow's Pollution-Free Power Plant. Office of Fossil Energy, http://fossil.energy.gov/programs/powersystems/futuregen/index.html#top, US Department of Energy, viewed July 20, 2005.
- [51] K.-W. Lee, Clean fuels from biomass, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 61–64.
- [52] DOE/EPA. Fuel Economy. Internet Resource Developed by U.S. Department of Energy and U.S. Environmental Protection Agency, http://www.fueleconomy.gov/feg/atv.shtml. Viewed May 20, 2001.
- [53] E. Gobina, Carbon dioxide utilization and recovery. BCC Report E-131, Business Communications Company, Norwalk, CT, December 2004.
- [54] Lange's HDBK. Lange's Handbook of Chemistry, 13th Edition, McGraw-Hill, New York, 1985, p. 9–4 and p. 9–70.
- [55] J.E. Ferguson, Carbon Dioxide. MacMillan Encyclopedia of Chemistry, vol. 1, MacMillan References, New York, 1997, pp. 302–308.
- [56] CRC Handbook of Chemistry and Physics. 75th Edition, CRC Press, Boca Raton, FL, 1994, p. 5–4.
- [57] W. Ormerod, P. Riemer, A. Smith, Carbon dioxide utilisation. iea greenhouse gas R&D programme, ISBN 1 898373 17 5, IEA, London, U.K., January 1995.
- [58] Air Liquid. CO₂: Main Applications. http://www.airliquide.com/, Viewed June 2005.
- [59] ACP, Liquid CO₂: Main Applications. http://www.acpco2.com/, Viewed June 2005.
- [60] D.H. Lauriente, CEH Report: Urea. Chemical Economics Handbook Program, SRI Consulting, Menlo Park, CA, July 2004.
- [61] NYS, Eight States and NYC Sue Top Five US Global Warming Polluters. Press Release, Office of New York State Attorney General, July 21, 2004.
- [62] C.S. Song, W. Pan, S.T. Srimat, J. Zheng, Y. Li, Y.H. Wang, B.Q. Xu, Q.M. Zhu, Tri-reforming of methane over Ni catalysts for CO₂ conversion to syngas with desired H₂/CO ratios using flue gas of power plants without CO₂ separation, Stud. Surf. Sci. Catal. 153 (2004) 315.
- [63] C.S. Song, Tri-reforming: a new process for reducing CO₂ emissions, Chem. Innovat. (formerly Chemtech, ACS) 31 (1) (2001) 21–26.
- [64] C.S. Song, Tri-reforming: a new process concept for effective conversion and utilization of CO₂ in fuel gas from electric power plants, Am. Chem. Soc. Div. Fuel Chem. Prep. 45 (2002) 772–776.
- [65] C.S. Song, W. Pan, Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H-2/CO ratios, Catal. Today 98 (4) (2004) 463–484.
- [66] C.S. Song, Proceedings of 2nd Topical Conference on Natural Gas Conversion and Utilization. Held in conjunction with AIChE 2002 Spring National Meeting, New Orleans, March 11–14, 2002, p. 402.
- [67] S.T. Srimat, C.S. Song, Effects of pressure on CO₂ reforming of CH₄ over Rh/Na-Y and Rh/Al₂O₃ catalysts, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 289–302 (Chapter 19).
- [68] C.S. Song, Chemicals, fuels and electricity Co-generated from coal. A proposed concept for utilization of CO₂ from power plants, in: Proceedings of 16th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, October 11–15, Paper No. 16-5, 1999.
- [69] S.-H. Lee, W. Cho, W.-S. Ju, B.-H. Cho, Y.-C. Lee, Y.-S. Baek, Trireforming of CH₄ using CO₂ for production of synthesis gas to dimethyl ether, Catal. Today 87 (2003) 133.
- [70] S.-H. Lee, W. Cho, W.-S. Ju, J.-S. Chang, S.-E. Park, Y.-S. Baek, Proceedings of the 7th International Conference on Carbon Dioxide Utilization. Seoul, Korea, October 12–16, 2003, p. 203.
- [71] M. Halmann, A. Steinfeld, Proceedings of the 17th International Conference on Efficiency, Costs, Optimization, Simulation and Environmental Impacts of Energy and Process Systsems, Guanajuato, México, July 7–9, 2004. Paper No. 185.
- [72] M. Halmann, A. Steinfeld, Paper presented at the 8th International Conference on carbon Dioxide Utilization, Oslo, Norway, June 22– 26, 2005.

- [73] D.J. Moon, Development of tri-reforming catalyst for utilization of CO₂ in SOFC and MCFC fuel reforming applications, in Proceedings of the 8th International Conference on carbon Dioxide Utilization, Oslo, Norway, June 22–26, 2005.
- [74] G. Centi, S. Perathoner, Heterogeneous catalytic reactions with CO₂: status and perspectives, Stud. Surf. Sci. Catal. 153 (2004) 1–8.
- [75] X. Xu, C.S. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Novel polyethyleneimine-modified mesoporous molecular sieve of MCM-41 type as adsorbent for CO₂ capture, Energy Fuels 16 (2002) 1463– 1469.
- [76] X. Xu, C.S. Song, J.M. Andresen, B.G. Miller, A.W. Scaroni, Preparation and characterization of novel CO₂ "Molecular Basket" adsorbents based on polymer-modified mesoporous molecular sieve MCM-41, Microporous Mesoporous Mater 62 (2003) 29–45.
- [77] X. Xu, C.S. Song, B.G. Miller, A.W. Scaroni, Adsorption separation of carbon dioxide from flue gas of gas-fired boiler by a novel nanoporous "Molecular Basket" adsorbent, Fuel Process. Technol. 86 (14–15) (2005) 1457–1472.
- [78] X. Xu, C.S. Song, B.G. Miller, A.W. Scaroni, Influence of moisture on CO₂ separation from gas mixture by a nanoporous adsorbent based on polyethylenimine-modified molecular sieve MCM-41, Ind. Eng. Chem. Res. 44 (2005) 8113–8119.
- [79] K. Essaki, K. Nakagawa, M. Kato, CO₂ absorption by lithium silicate at room temperature, J. Chem. Eng. Jpn. 37 (6) (2004) 772–777.
- [80] M. Kato, K. Essaki, S. Yoshikawa, K. Nakagawa, H. uemoto, Reproducibility of CO₂ absorption and emission for cyclical pellet type lithium orthosilicate, J. Ceram. Soc. Jpn. 112 (5) (2004) S1338–S1340.
- [81] A. Dibenedetto, M. Aresta, Nb₂O₅ as catalyst in the oxidative carboxylation of olefins, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 119–121.
- [82] K. Tomishige, T. Sakaihori, Y. Ikeda, K. Fujimoto, A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia, Catal. Lett. 58 (1999) 225–229.
- [83] K. Tomishige, Y. Ikeda, T. Sakaihori, K. Fujimoto, Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide, J. Catal. 192 (2) (2000) 355–362.
- [84] K.T. Jung, A.T. Bell, An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia, J. Catal. 204 (2) (2001) 339–347.
- [85] K. Tomishige, Y. Furusawa, Y. Ikeda, M. Asadullah, K. Fujimoto, CeO₂–ZrO₂ solid solution catalyst for selective synthesis of dimethyl carbonate from methanol and carbon dioxide, Catal. Lett. 76 (1–2) (2001) 71–74.
- [86] K. Tomishige, K. Kunimori, Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO₂-ZrO₂ solid solution heterogeneous catalyst: effect of H₂O removal from the reaction system, Appl. Catal. A: Gen. 237 (1–2) (2002) 103–109.
- [87] D. Ballivet-Tkatchenko, O. Douteau, S. Stutzmann, Reactivity of carbon dioxide with *n*-butyl(phenoxy)-,(alkoxy)-, and (oxo)stannanes: insight into dimethyl carbonate synthesis, Organometallics 19 (2000) 4563– 4567.
- [88] Y. Ono, Dimethyl carbonate for environmentally benign reactions, Catal. Today 35 (1–2) (1997) 15–25.
- [89] A. Akgerman, C. Erkey, S.M. Ghoreishi, Supercritical extraction of hexachlorobenzene from soil, Ind. Eng. Chem. Res. 31 (1) (1992) 333– 339.
- [90] S.J. Macnaughton, N.R. Foster, Supercritical adsorption and desorption behavior of DDT on activated carbon using carbon-dioxide, Ind. Eng. Chem. Res. 34 (1) (1995) 275–282.
- [91] E. Reverchon, G. Dellaporte, F. Senatore, Supercritical CO₂ extraction and fractionation of lavender essential oil and waxes, J. Agric. Food Chem. 43 (6) (1995) 1654–1658.
- [92] E. Reverchon, Supercritical fluid extraction and fractionation of essential oils and related products, J. Supercrit. Fluids 10 (1) (1997) 1–37.
- [93] Y.T. Chen, Y.C. Ling, An overview of supercritical fluid extraction in Chinese herbal medicine: from preparation to analysis, J. Food Drug Anal. 8 (4) (2000) 235–247.

- [94] N. Kapucu, A. Guvenc, U. Mehmetoglu, A. Calimli, Reactive extraction of organic acids by supercritical CO₂, Rev. Chem. Eng. 15 (4) (1999) 233–243.
- [95] Y. Wu, W.J. Si, Y.S. Jing, H.Z. Miao, Influence of the supercritical debinding on the properties of injection molding ZrO₂ ceramics, Rare Met. Mater. Eng. 32 (2003) 296–298.
- [96] P.G. Jessop, T. Ikariya, R. Noyori, Homogeneous catalytic-hydrogenation of supercritical carbon-dioxide, Nature 368 (6468) (1994) 231– 233.
- [97] D. Koch, W. Leitner, Rhodium-catalyzed hydroformylation in supercritical carbon dioxide, J. Am. Chem. Soc. 120 (51) (1998) 13398– 13404.
- [98] D.A. Canelas, J.M. DeSimone, Polymerizations in liquid and supercritical carbon dioxide, Adv. Polym. Sci. 133 (1997) 103–140.
- [99] R.S. Oakes, A.A. Clifford, C.M. Rayner, The use of supercritical fluids in synthetic organic chemistry, J. Chem. Soc. Perkin Trans. 1 (2001) 917– 941.
- [100] G. Musie, M. Wei, B. Subramaniam, D.H. Busch, Catalytic oxidations in carbon dioxide-based reaction media, including novel CO₂-expanded phases, Coord. Chem. Rev. 219 (2001) 789–820.
- [101] B. Subramaniam, D.H. Busch, Use of dense-phase carbon dioxide in catalysis, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington DC, ACS Symposium Series, vol. 809, 2002, pp. 364–386 (Chapter 24).
- [102] C.D. Ablan, J.P. Hallett, K.N. West, R.S. Jones, C.A. Eckert, C.L. Liotta, P.G. Jessop, Use and recovery of a homogeneous catalyst with carbon dioxide as a solubility switch, Chem. Commun. (24) (2003) 2972–2973.
- [103] M.O. Sugino, H. Shimada, T. Turuda, H. Miura, N. Ikenaga, T. Suzuki, Oxidative dehydrogenation of ethlybenzene with carbon dioxide, Appl. Catal. A: Gen. 121 (1) (1995) 125–137.
- [104] M. Anpo, K. Chiba, Photocatalytic reduction of CO₂ on anchored titanium-oxide catalysts, J. Mol. Catal. 74 (1–3) (1992) 207–212.
- [105] M. Anpo, H. Yamashita, Y. Ichihashi, Y. Fujii, M. Honda, Photo-catalytic reduction of CO₂ with H₂O on titanium oxides anchored within micropores of zeolites: Effects of the structure of the active sites and the addition of Pt, J. Phys. Chem. B 101 (14) (1997) 2632–2636.
- [106] H. Yamashita, K. Ikeue, M. Anpo, Photocatalytic reduction of CO₂ with H₂O on various titanium oxide catalysts, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 330–343 (Chapter 22).
- [107] W.Y. Lin, H.X. Han, H. Frei, CO_2 splitting by H_2O to CO and O_2 under UV light in TiMCM-41 silicate sieve, J. Phys. Chem. B 108 (47) (2004) 18269–18273.
- [108] N. Ulagappan, H. Frei, Mechanistic study of CO₂ photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy, J. Phys. Chem. A 104 (33) (2000) 7834–7839.
- [109] M. Steinberg, CO₂ mitigation and fuel production, Am. Chem. Soc. Div. Petrol. Chem. Prepr. 45 (1) (2000) 74–76.
- [110] M. Steinberg, CO₂ Mitigation and fuel production, in: C.S Song, A.M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, 2001.
- [111] M. Steinberg, CO₂ Mitigation and fuel production, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002. pp. 31–37 (Chapter 2).
- [112] C. Schild, A. Wokaun, A. Baiker, On the mechanism of CO and CO₂ hydrogenation reactions on zirconia-supported catalysts—a diffuse reflectance FTIR Study. 2. Surface species on copper zirconia catalysts—implications for methanol synthesis selectivity, J. Mol. Catal. 63 (2) (1990) 243–254.
- [113] Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto, T. Imanaka, Opperzirconia catalysts for methanol synthesis from carbon-dioxide - effect of ZNO addition to CU-ZRO2 catalysts, Catal. Lett. 26 (3–4) (1994) 345–354.

- [114] D.B. Clarke, A.T. Bell, An Infrared study of methanol synthesis from CO_2 on clean and potassium-promoted Cu/SiO₂, J. Catal. 154 (2) (1995) 314–328.
- [115] M. Sahibzada, D. Chadwick, I.S. Metcalfe, Hydrogenation of carbon dioxide to methanol over palladium-promoted Cu/ZnO/Al₂O₃ catalysts, Catal. Today 29 (1–4) (1996) 367–372.
- [116] H. Sakurai, M. Haruta, Synergism in methanol synthesis from carbon dioxide over gold catalysts supported on metal oxides, Catal. Today 29 (1–4) (1996) 361–365.
- [117] T. Fujitani, I. Nakamura, T. Uchijima, J. Nakamura, The kinetics and mechanism of methanol synthesis by hydrogenation of CO₂ over a Zn-deposited Cu(1 1 1) surface, Surf. Sci. 383 (2–3) (1997) 285– 298.
- [118] Y. Borodko, G.A. Somorjai, Catalytic hydrogenation of carbon oxides—a 10-year perspective, Appl. Catal. A: Gen. 186 (1–2) (1999) 355–362.
- [119] A. Baiker, Utilization of carbon dioxide in heterogeneous catalytic synthesis, Appl. Organomet. Chem. 14 (12) (2000) 751–762.
- [120] Y.K. Park, J.K. Jeon, S.K. Ihm, Design of copper based hybrid catalysts for CO₂ hydrogenation, Stud. Surf. Sci. Catal. 153 (2004) 25–32.
- [121] K. Omata, M. Hashimoto, Y. Watanabe, T. Umegaki, S. Wagatsuma, G. Ishiguro, M. Yamada, Optimization of Cu oxide catalyst for methanol synthesis under high CO₂ partial pressure using combinatorial tools, Appl. Catal. A: Gen. 262 (2) (2004) 207–214.
- [122] H. Tominaga, M. Nagai, Density functional study of carbon dioxide hydrogenation on molybdenum carbide and metal, Appl. Catal. A: Gen. 282 (1–2) (2005) 5–13.
- [123] T. Inui, K. Kitagawa, T. Takeguchi, T. Hagiwara, Y. Makino, Hydrogenation of carbon-dioxide to C1-C7 hydrocarbons via methanol on composite catalysts, Appl. Catal. A: Gen. 94 (1) (1993) 31-44.
- [124] S.S. Nam, H. Kim, G. Kishan, M.J. Choi, K.W. Lee, Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ionexchanged Y-zeolite catalysts, Appl. Catal. A: Gen. 179 (1–2) (1999) 155–163.
- [125] C.K. Kuei, M.D. Lee, Hydrogenation of carbon-dioxide by hybrid catalysts, direct synthesis of aromatics from carbon-dioxide and hydrogen, Can. J. Chem. Eng. 69 (1) (1991) 347–354.
- [126] C.M. White, B.R. Strazisar, E.J. Granite, J.S. Hoffman, H.W. Pennline, Separation and capture of CO₂ from large stationary sources and sequestration in geological formations—Coalbeds and deep saline aquifers, J. Air Waste Manag. Assoc. 53 (6) (2003) 645–715.
- [127] DOE/NETL Weyburn. Projects Facts. WEYBURN CARBON DIOXIDE SEQUESTRATION PROJECT. US Department of Energy, National Energy Technology Laboratory, March 2005.
- [128] DOE/NETL Kansas. Projects Facts. Landfill Gas Sequestration in Kansas. US Department of Energy, National Energy Technology Laboratory, February 2005.
- [129] M. Markels, R.T. Barber, Sequestration of carbon dioxide by ocean fertilization, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 45– 48.
- [130] D. Beecy, The role of carbon sequestration in a national carbon management strategy, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 38– 44.
- [131] D. Mahajan, C. Song, A.W. Scaroni, Micro-reactor study on catalytic reduction of CO₂ into liquid fuels: simulating reactions under geologic formation conditions, Am. Chem. Soc. Div. Petrol. Chem. Prepr. 45 (1) (2000) 113–117.
- [132] D. Mahajan, C.S. Song, A.W. Scaroni, Catalytic reduction of CO₂ into liquid fuels: simulating reactions under geological formation conditions, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 166–180 (Chapter 11).
- [133] G.M. Bond, J. Stringer, D.K. Brandvold, F.A. Simsek, M.G. Medina, G. Egeland, Development of integrated system for biomimetic CO₂ sequestration using the enzyme carbonic anhydrase, Energy Fuels 15 (2) (2001) 309–316.
- [134] ACS. Facts & figures for the chemical industry. Chem. Eng. News, June 24, 1996, pp. 38–79.

- [135] ACS. Facts & figures for the chemical industry. Chem. Eng. News, June 26, 2000, pp. 48–89.
- [136] OTP (Office of Technology Policy, U.S. Department of Commerce.). Meeting the Challenge: U.S. Industry Faces the 21st Century. Chemtech, 1996, vol. 26, pp. 46–54.
- [137] B. Suresh, Y. Ishikawa, CEH Report: Carbon Dioxide. Chemical Economics Handbook Program, SRI Consulting, Menlo Park, CA, August 2003.
- [138] D. Beecy, F.M. Ferrell, J.K. Carey, Advanced concepts for CO₂ conversion, storage, and reuse, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 99–100.
- [139] A. Chakma, CO₂ capture processes—opportunities for improved energy efficiencies. Energy Conv. Manag. 38 (1997) S51–S56.
- [140] V.R. Choudhary, A.S. Mamman, B.S. Uphade, R.E. Babcock, CO₂ Reforming and simultaneous CO₂ and steam reforming of methane to syngas over Co_xNi_{1 x}O supported on macroporous silica-alumina precoated with MgO, in: C. Song, A.M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, pp. 224–240.
- [141] DOE/FE. Capturing Carbon Dioxide. Office of Fossil Energy, U.S. Department of Energy, 1999a.
- [142] DOE/FE, 1999b. Project Facts-Advanced Power and Fuel Technologies. The Vision 21 EnergyPlex Concept. DOE/FE-0364, Office of Fossil Energy, U.S. Department of Energy, 1999b.
- [143] DOE/OS-FE. Carbon Sequestration. State of the Science. Office of Science and Office of Fossil Energy, U.S. Department of Energy, February 1999.
- [152] G. Gottlicher, R. Pruschek, Comparison of CO₂ removal systems for fossil-fueled power plant processes, Energy Conv. Manag. 38 (1997) S173–S178.
- [153] H.J. Herzog, Using carbon capture and sequestration technologies to address climate change concerns, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 53–55.
- [154] H.J. Herzog, What future for carbon capture and sequestration? Environ. Sci. Technol. 35 (7) (2001) 148A–153A.
- [155] H. Herzog, E. Drake, E. Adam, CO₂ capture, reuse, and storage technologies for mitigating global climate change. Report to U.S. Department of Energy, DE-AF22-96PC01257, January 1997, pp. 66.
- [156] H.J. Herzog, E.M. Drake, Carbon dioxide recovery and disposal from large energy systems, Ann. Rev. Energ. Env. 21 (1996) 145–166.
- [157] R. Kane, D.E. Klein, Opportunities for advancements in chemical processes in carbon sequestration and climate change mitigation, Am. Chem. Soc. Div. Fuel Chem. Prepr. 46 (1) (2001) 275–277.
- [158] E.S. Kikkinides, R.T. Yang, S.H. Cho, Concentration and recovery of CO₂ from flue-gas by pressure swing adsorption, Ind. Eng. Chem. Res. 32 (11) (1993) 2714–2720.
- [159] W.J. Koros, R. Mahajan, Pushing the limits on possibilities for large scale gas separation: which strategies? J. Memb. Sci. 175 (2) (2000) 181–196
- [161] L.E. Manzer, CO₂ Emission reductions: an opportunity for new catalytic technology, in: C.S. Song, A. M. Gaffney, K. Fujimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 39–52 (Chapter 3).
- [162] C.L. Mariz, Carbon dioxide recovery: large scale design trends, J. Can. Petrol. Technol. 37 (7) (1998) 42–47.
- [164] A. Meisen, X.S. Shuai, Research, Development issues in CO₂ capture, Energy Conv. Manag. 38 (1997) S37–S42.
- [165] T. Mimura, S. Shimojyo, T. Suda, M. Iijima, S. Mitsuoka, Development of energy-saving absorbents for the recovery of carbon-dioxide from boiler flue-gas, Kagaku Kogaku Ronbun 21 (3) (1995) 478–485
- [166] M.T. Sander, C.L. Mariz, The fluor daniel ECONAMINE FG Procespast experience and present-day focus, Energy Conv. Manag. 33 (5–8) (1992) 341–348.
- [167] S. Satyapal, T. Filburn, J. Trela, J. Strange, Performance and properties of a solid amine sorbent for carbon dioxide removal in space life support applications, Energy Fuels 15 (2) (2001) 250–255.

- [168] K. Sayama, H. Arakawa, Photocatalytic decomposition of water and photocatalytic reduction of carbon dioxide over ZrO₂ catalyst, J. Phys. Chem. 97 (3) (1993) 531–533.
- [169] I.M. Smith, CO₂ reduction prospects for Coal. IEA Report No. CCC/ 26, IEA Coal Research, London, U.K., 1999, 84 pp.
- [170] A.M. Wolsky, E.J. Daniels, B.J. Jody, CO₂ capture from the flue-gas of conventional fossil-fuel-fired power-plants, Environ. Prog. 13 (3) (1994) 214–219
- [171] P.B. Weisz, Basic choices and constraints on long-term energy supplies, Phys. Today 57 (2004) 47–52.
- [172] C.S. Song, H.H. Schobert, Opportunities for developing specialty chemicals and advanced materials from coals, Fuel Process. Technol. 34 (1993) 157–196.
- [173] H.H. Schobert, C.S. Song, Chemicals and materials from coal in the 21st century, Fuel 81 (2002) 15–32.
- [174] J.S. Yoo, The role of CO₂ for the gas-phase O₂ oxidation of alkylaromatics to aldehydes, in: C.S. Song, A.M. Gaffney, K. Fijimoto (Eds.), CO₂ Conversion and Utilization, American Chemical Society, Washington, DC, ACS Symposium Series, vol. 809, 2002, pp. 112–129 (Chapter 8).